Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 280: 116546, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843747

RESUMO

In China, fence net aquaculture practices have been established in some subsidence waters that have been formed in coal mining subsidence areas. Within this dynamic ecological context, diverse fish species grow continuously until being harvested at the culmination of their production cycle. The purpose of this study was to investigate diverse factors influencing the bioavailability and distribution of mercury (Hg) and methylmercury (MeHg), which have high physiological toxicity in fish, in the Guqiao coal mining subsidence area in Huainan, China. Mercury and MeHg were analyzed in 38 fish samples of eight species using direct mercury analysis (DMA-80) and gas chromatography-cold vapor atomic fluorescence spectrometry (GC-CVAFAS). The analysis results show that the ranges of Hg and MeHg content and methylation rate in the fish were 7.84-85.18 ng/g, 0.52-3.52 ng/g, and 0.81-42.68 %, respectively. Meanwhile, conclusions are also summarized as following: (1) Monophagous herbivorous fish that were fed continuously in fence net aquaculture areas had higher MeHg levels and mercury methylation rates than carnivorous fish. Hg and MeHg contents were affected by different feeding habits of fish. (2) Bottom-dwelling fish show higher MeHg levels, and habitat selection in terms of water depth also partially affected the MeHg content of fish. (3) The effect of fence net aquaculture on methylation of fish in subsidence water is mainly from feed and mercury-containing bottom sediments. However, a time-lag is observed in the physiological response of benthic fishes to the release of Hg from sediments. Our findings provides baseline reference data for the ecological impact of fence net aquaculture in waters affected by soil subsidence induced by coal mining in China. Prevalent environmental contaminants within coal mining locales, notably Hg, may infiltrate rain-induced subsidence waters through various pathways.

2.
Fish Shellfish Immunol ; 148: 109475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447781

RESUMO

The T-cell receptor (TCR) is a specific molecule on the surface of all T cells that mediates cellular adaptive immune responses to antigens. Hucho bleekeri is a critically endangered species and is regarded as a glacial relict that has the lowest-latitude distribution compared with any Eurasian salmonid. In the present study, two TCR genes, namely, TCR α and ß, were identified and characterized in H. bleekeri. Both TCR α and TCR ß have typical TCR structures, including the IgV domain, IgC domain, connecting peptide, transmembrane and cytoplasmic domains. The two TCR genes were constitutionally expressed in various tissues, with the highest expression found in the spleen for TCR α and in the trunk kidney for TCR ß. Challenge of H. bleekeri with LPS or poly(I:C) resulted in significant upregulation of both TCR α and ß expression in headkidney and spleen primary cells, indicating their potential roles in the immune response. Molecular polymorphism analysis of the whole ORF regions of TCR α and ß in different individuals revealed high diversity of IgV domains of these two genes, especially in complementarity-determining region (CDR) 3. The ratio of nonsynonymous substitution occurred at a significantly higher frequency than synonymous substitution in the CDR of TCR α and ß, demonstrating the existence of positive selection. The results obtained in the present study enhance our understanding of TCR roles in regulating immune mechanisms and provide new information for the study of TCR lineage diversity in fish.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Salmonidae , Animais , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Polimorfismo Genético , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Salmonidae/genética
3.
J Environ Manage ; 347: 119127, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797510

RESUMO

This study prepared and characterized bamboo-derived biochar loaded with different ratios of iron and manganese; evaluated its remediation performance in arsenic-contaminated soil by studying the changes in various environmental factors, arsenic speciation, and arsenic leaching amount in the soil after adding different materials; proposed the optimal ratio and mechanism of iron-manganese removal of arsenic; and explained the multivariate relationship between enzyme activity and soil environmental factors based on biological information. Treatment with Fe-Mn-modified biochar increased the organic matter, cation exchange capacity, and N, P, K, and other nutrient contents. During the remediation process, O-containing functional groups such as Mn-O/As and Fe-O/As were formed on the surface of the biochar, promoting the transformation of As from the mobile fraction to the residual fraction and reducing the phytotoxicity of As, and the remediation ability for As was superior to that of Fe-modified biochar. Mn is indispensable in the FeMn-BC synergistic remediation of As, as it can increase the adsorption sites and the number of functional groups for trace metals on the surface of biochar. In addition to electrostatic attraction, the synergistic mechanism of ferromanganese-modified biochar for arsenic mainly involves redox and complexation. Mn oxidizes As(Ⅲ) to more inert As(V). In this reaction process, Mn(Ⅳ) is reduced to Mn(Ⅲ) and Mn(II), promoting the formation of Fe(Ⅲ) and the conversion of As into Fe-As complexes, while As is fixed due to the formation of ternary surface complexes. Moreover, the effect of adding Fe-Mn-modified biochar on soil enzyme activity was correlated with changes in soil environmental factors; catalase was correlated with soil pH; neutral phosphatase was correlated with soil organic matter; urease was correlated with ammonia nitrogen, and sucrase activity was not significant. This study highlights the potential value of FM1:3-BC as a remediation agent in arsenic-contaminated neutral soils.


Assuntos
Arsênio , Poluentes do Solo , Manganês/química , Arsênio/química , Compostos Férricos , Poluentes do Solo/química , Carvão Vegetal/química , Ferro/química , Solo/química
4.
Fish Shellfish Immunol ; 142: 109118, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774901

RESUMO

Species in Triplophysa display strong adaptability to the extreme environment of the plateau, thus offering an ideal model to study the molecular mechanism of fish adaptation to environmental stress. In the present study, we conducted integrated analysis of the transcriptome and metabolism of liver tissue in Triplophysa siluroides under heat stress (28 °C) and control (10 °C) conditions to identify heat stress-induced genes, metabolites and pathways. RNA-Seq identified 2373 differentially expressed genes, which consisted of 1360 upregulated genes and 1013 downregulated genes, in the heat stress group vs. the control group. Genes in the heat shock protein (Hsp) family, including Hsp40, Hsp70, Hsp90 and other Hsps, were strongly upregulated by heat stress. Pathway enrichment analysis revealed that the PI3K/AKT/mTOR and protein processing in the endoplasmic reticulum (ER) pathways were significantly affected by heat stress. Metabolism sequencing identified a total of 155 differentially abundant metabolites, including 118 significantly upregulated metabolites and 37 downregulated metabolites. Combined analysis of the transcriptome and metabolism results showed that ubiquitin-dependent proteolysis and purine metabolism pathways were enhanced in response to acute heat stress to protect cells from damage under stress conditions. The results of this study may contribute to our understanding of the underlying molecular mechanism of the heat stress response in cold-water fish.


Assuntos
Cipriniformes , Transcriptoma , Animais , Altitude , Fosfatidilinositol 3-Quinases/genética , Perfilação da Expressão Gênica/veterinária , Resposta ao Choque Térmico/genética , Cipriniformes/genética
5.
Environ Pollut ; 335: 122378, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586683

RESUMO

The Hg released from coal mining activities can endanger soil ecosystems and pose a risk to human health. Understanding the accumulation characteristics of mercury (Hg) in coal mining soil is important for effectively controlling Hg emissions and developing measures for the prevention and control of Hg contamination. To identify the potential sources of Hg in soils, the Hg concentration and isotopic composition characteristics of raw coal and different topsoil types from the areas surrounding a coal mine were determined in this study. The results showed that Hg in coal mainly exists mainly in the form of inorganic Hg, and Hg has experienced Hg2+ photoreduction prior to incorporating into coal. In addition, the composition of Hg isotopes differed significantly among different topsoil types, and the δ202Hg value of the farmland soil exhibited large negative excursions compared to the coal mining soil. The ternary mixed model further revealed the presence of substantial differences in potential Hg sources among the two regions, with the coal mining soil being greatly disturbed by anthropogenic activity, and the relative contributions of Hg from raw coal, coal gangue, and background soil to coal mining soil being 33.42%, 34.4%, and 32.19%, respectively. However, Hg from raw coal, coal gangue and background soil contributed 17.04%, 21.46%, and 61.51% of the Hg in the farmland soil, indicating that the accumulation of Hg in farmland soil was derived primarily from the background soil. Our study demonstrated that secondary pollution in soil caused by immense accumulation of solid waste (gangue) by mining activities offers a significant challenge to ecological security. These findings provide new insights into controlling soil Hg in mining areas and further highlight the urgency of strict protective measures for contaminated sites.


Assuntos
Minas de Carvão , Mercúrio , Poluentes do Solo , Humanos , Ecossistema , Monitoramento Ambiental/métodos , Mercúrio/análise , Mineração , Solo , Isótopos , Carvão Mineral/análise , Poluentes do Solo/análise , China
6.
Environ Sci Pollut Res Int ; 30(43): 97911-97924, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37603244

RESUMO

During the dam discharging period, the strong aeration of high-speed water leads to the supersaturation of total dissolved gas (TDG) in the downstream water, which causes gas bubble disease (GBD) in fish and threatens their survival. TDG supersaturation has now become an ecological and environmental issue of global concern; however, the molecular mechanism underlying the physiological effect of TDG supersaturation on fish is poorly known. Here, we comprehensively investigated the effect of TDG supersaturation on Pelteobagrus fulvidraco at the histopathological, biochemical, transcriptomic, and metabolomic levels. After exposure to 116% TDG, P. fulvidraco exhibited classic GBD symptoms and pathological changes in gills. The level of superoxide dismutase was highly significantly decreased. Transcriptomic results revealed that heat shock proteins (HSPs) and a large number of genes involved in immunity were increased by TDG stress. A key environmental sensor PI3K/Akt/mTOR pathway was significantly stimulated for defence against stress. Integrated transcriptomic and metabolomic analyses revealed that key metabolites and genes were upregulated in the triacylglycerol synthesis pathway and that amino acid levels decreased, which might be associated with TDG supersaturation stress. The present study demonstrated that TDG supersaturation could cause severe physiological damage in fish. HSP genes, immune functions, and energy metabolic pathways were enhanced to counteract the adverse effects.


Assuntos
Peixes-Gato , Animais , Fosfatidilinositol 3-Quinases , Perfilação da Expressão Gênica , Transcriptoma , Aminoácidos
7.
iScience ; 26(8): 107413, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37559901

RESUMO

To analyze the differences between different-sized Acipenser dabryanus, we randomly selected 600 3-month-old A. dabryanus juveniles. Four months later, the blood and white muscle of these fish were analyzed. The results showed no significant difference in the length-weight relationship (LWR) b value between the large and small A. dabryanus. The levels of serum growth hormone (gh) and insulin-like growth factor 1 (igf1) in the large A. dabryanus were significantly lower than those in the small, whereas the activity levels of Total superoxide dismutase (T-sod) and catalase (cat) were opposite to the results of gh and igf1. A total of 212 and 245 metabolites showed significant changes in the positive and negative polarity mode, respectively. Among 3,308 proteins identified, 69 proteins showed upregulated expression, and 185 proteins showed downregulated expression. These results indicated that the growth advantage of A. dabryanus was closely related to glycolysis, protein synthesis, and antioxidant function.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37004899

RESUMO

In the dam discharge season, the supersaturation of total dissolved gas (TDG) in the downstream channel can seriously affect the survival of aquatic organisms. However, few studies have revealed the mechanism by which TDG supersaturation affects the physiology of fish thus far. The present study was conducted to study the mechanism of the effect of TDG supersaturation on Schizothorax davidi, a species that is very sensitive to gas bubble disease. S. davidi was exposed to 116 % TDG supersaturation stress for 24 h. Serum biochemical tests showed that the aspartate aminotransferase and alanine aminotransferase levels after TDG supersaturation exposure were significantly decreased compared to those in the control group, while superoxide dismutase activity was significantly increased. RNA-Seq of gill tissues identified 1890 differentially expressed genes (DEGs), which consisted of 862 upregulated genes and 1028 downregulated genes, in the TDG supersaturation group vs. the control group. Pathway enrichment analysis revealed that the cell cycle, apoptosis and immune signaling pathways were affected by TDG stress. The results of this study may contribute to our understanding of the underlying molecular mechanism of environmental stress in fish.


Assuntos
Cyprinidae , Gases , Animais , Gases/análise , Movimentos da Água , Cyprinidae/genética , Transcriptoma , Perfilação da Expressão Gênica
9.
Ecotoxicol Environ Saf ; 249: 114366, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508793

RESUMO

Temperature fluctuations caused by climate change and global warming pose a great threat to various species. Most fish are particularly vulnerable to elevated temperatures. Understanding the mechanism of high-temperature tolerance in fish can be beneficial for proposing effective strategies to help fish cope with global warming. In this study, we systematically studied the effects of high temperature on Acipenser dabryanus, an ancient living fossil and flagship species of the Yangtze River, at the histological, biochemical, transcriptomic and metabolomic levels. Intestinal and liver tissues from the control groups (18 °C) and acute heat stress groups (30 °C) of A. dabryanus were sampled for histological observation and liver tissues were assessed for transcriptomic and metabolomic profiling. Histopathological analysis showed that the intestine and liver tissues were damaged after heat stress. The plasma cortisol content and the levels of oxidative stress markers (catalase/glutathione reductase) and two aminotransferases (aspartate aminotransferase/alanine aminotransferase) increased significantly in response to acute heat stress. Transcriptomic and metabolomic methods showed 6707 upregulated and 4189 downregulated genes and 64 upregulated and 78 downregulated metabolites in the heat stress group. Heat shock protein (HSP) genes showed striking changes in expression under heat stress, with 21 genes belonging to the HSP30, HSP40, HSP60, HSP70 and HSP90 families significantly upregulated by short-term heat stress. The majority of genes associated with ubiquitin and various immune-related pathways were also markedly upregulated in the heat stress group. In addition, the combined analysis of metabolites and gene profiles suggested an enhancement of amino acid metabolism and glycometabolism and the suppression of fatty acid metabolism during heat stress, which could be a potential energy conservation strategy for A. dabryanus. To the best of our knowledge, the present study represents the first attempt to reveal the mechanisms of heat stress responses in A. dabryanus, which can provide insights into improved cultivation of fish in response to global warming.


Assuntos
Peixes , Transcriptoma , Animais , Peixes/genética , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Proteínas de Choque Térmico/genética
10.
Environ Res ; 216(Pt 1): 114457, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183788

RESUMO

With the rapid development of hydropower facility construction, the total dissolved gas (TDG) generated by dam discharge is seriously threatening the survival of fish and has become an ecological environmental issue of global concern. However, how TDG affects fish physiology and the underlying molecular mechanism remain poorly known. In this study, Acipenser dabryanus, an ancient living fossil that is a flagship species of the Yangtze River, was exposed to water supersaturated with TDG at a level of 116% for 48 h. A comprehensive analysis was performed to study the effect of TDG supersaturation stress on A. dabryanus, including histopathological, biochemical, transcriptomic and metabolomic analyses. The histopathological results showed that mucosal-associated lymphoid tissues were seriously damaged after TDG supersaturation stress. Plasma catalase levels increased significantly under TDG supersaturation stress, while superoxide dismutase levels decreased significantly. Transcriptomic analysis revealed 289 upregulated genes and 162 downregulated genes in gill tissue and 535 upregulated and 104 downregulated genes in liver tissue. Metabolomic analysis revealed 63 and 164 differentially abundant metabolites between the control group and TDG group in gill and liver, respectively. The majority of heat shock proteins and genes related to ubiquitin and various immune-related pathways were significantly upregulated by TDG supersaturation stress. Integrated transcriptomic and metabolomic analyses revealed the upregulation of amino acid metabolism and glycometabolism pathways under TDG supersaturation stress. Glycerophospholipid metabolism was increased which might be associated with maintaining cell membrane integrity. This is the first study revealing the underlying molecular mechanisms of effects of TDG supersaturation on fish. Our results suggested that acute TDG supersaturation stress could enhance immune and antioxidative functions and activate energy metabolic pathways as an adaptive mechanism in A. dabryanus.


Assuntos
Gases , Transcriptoma , Animais , Gases/análise , Peixes/fisiologia , Rios/química , Movimentos da Água
11.
Heliyon ; 8(10): e10783, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36276739

RESUMO

Platypharodon extremus is an endemic species on the Qinghai-Tibet Plateau. As a secondary protected species in China, the basic genomic information of this species has not yet been reported. Here, through third-generation sequencing, the full-length transcriptome of P. extremus was obtained. We identified 323,290 CCS sequences, and a total of 50,083 unigenes were extracted after correction with second-generation sequencing data and the removal of redundant reads. A total of 50,067 transcripts were annotated with the various databases. Based on the sequence information, three members in the bone morphogenetic proteins (bmps) family and their receptors, were identified. We found that the special structures of these proteins (zinc-dependent metalloproteinase domain, CUB domains, EGF-like domains and TGF-ß domain) are highly conserved in fish and that they are closely evolutionarily related to the bmps and bmp receptors of Cyprinidae fishes. This is the first study to sequence the full-length transcriptome of P. extremus, which will help us to further understand its biology.

12.
Fish Shellfish Immunol ; 122: 276-287, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35181444

RESUMO

Acipenser dabryanus is a species endemic to Yangtze River drainage in China and is listed as a critical endangered species on the IUCN Red List. In the present study, the liver and spleen transcriptomes were analyzed by comparing the data of A. dabryanus that experienced nine different feeding rhythms (once a day diurnal, T1; two times a day diurnal, T2; three times a day diurnal, T3; four times a day, T4; five times a day, T5; six times a day, T6; once a day nocturnal, Tn1; two times a day nocturnal, Tn2; and three times a day nocturnal, Tn3). Transcriptome sequencing generated 1,901,236,482 clean reads, encompassing 570.4 Gb of sequence data. The reads were assembled into 287,372 unigenes with an average length of 803 bp and an N50 of 1004 bp. KEGG analysis showed that 1,080, 1,030, and 1216 unigenes were annotated to lipid metabolism, amino acid metabolism and carbohydrate metabolism, respectively, and 2549 unigenes were annotated to the immune system category. Differentially expressed genes (DEGs) between different feeding frequency groups or between nighttime and daytime feeding were obtained and functionally enriched. Importantly, DEGs participating in nutrition metabolism and various immunoregulation pathways and their expression profiles in A. dabryanus were discussed. Interestingly, the majority of key genes related to lipid metabolism or in immunodependent gene families, such as antimicrobial peptides, Toll-like receptors, chemokines, NOD-like receptors, B cell receptors and the major histocompatibility complex, were all significantly upregulated in animals in the T6 group compared to the characteristics of animals in the T2 group that had a normal feeding frequency. In addition, light/dark rhythm also affected the immunity of A. dabryanus, and fish fed at night possessed an improved immune response than fish fed at daytime. Our study suggested that feeding six times a day is optimal for A. dabryanus juvenile growth as it enhances the organism's nutrition metabolism and immune function.


Assuntos
Peixes , Perfilação da Expressão Gênica , Animais , Espécies em Perigo de Extinção , Peixes/genética , Perfilação da Expressão Gênica/veterinária , Receptores Toll-Like/genética , Transcriptoma
13.
Artigo em Inglês | MEDLINE | ID: mdl-34942371

RESUMO

Yangtze sturgeon (Acipenser dabryanus) is a species endemic to Yangtze River drainage in China and is listed as a critically endangered species on the IUCN Red List. In the present study, cholecystokinin (CCK), one of the most important neuroregulatory digestive genes, and its receptor (CCKr) were identified from the full-length transcriptome analysis of A. dabryanus. The deduced amino acid sequences of CCK and CCKr from A. dabryanus showed structural features common to those in other vertebrates. Gene expression profile analysis showed that CCK and CCKr were universally expressed in different tissues, and both had the highest expression in the brain. Starvation and refeeding significantly regulated the expression levels of CCK and CCKr in the brain, suggesting that CCK and CCKr were involved in feed intake regulation in A. dabryanus as in mammals. In addition, the expression levels of CCK and CCKr under different feeding frequencies were studied. Compared with the control group (fed two times a day), the expression levels of CCK and CCKr in the intestine and brain did not change significantly in the other groups after 8 weeks of rearing, indicating that the feeding frequency might not influence the appetite of A. dabryanus. The present work provides a basis for further investigation into the regulation of feeding in A. dabryanus.


Assuntos
Colecistocinina , Inanição , Animais , Colecistocinina/genética , Colecistocinina/metabolismo , Espécies em Perigo de Extinção , Peixes/fisiologia , Mamíferos/metabolismo , Distribuição Tecidual
14.
J Environ Manage ; 298: 113451, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352479

RESUMO

The increase in NO3- content in surface water caused by intensive mining activities in Huainan City, China, has attracted considerable attention owing to the deterioration of water quality and the degradation of ecosystems in recent years. The Huainan mining area, which is highly disturbed by anthropogenic activities, was selected as a typical observation area, and the surface water was classified as open subsidence water (OSW), closed subsidence water (CSW), and river water (RW). Moreover, the hydrochemical parameters and the δ15N and δ18O values of nitrate were employed to quantitatively trace the sources and biochemical transformation of NO3-, and the contribution ratios of different NO3- sources were estimated using the stable isotope analysis in R based on the Bayesian model. There was evident nitrification in the study area, but no significant denitrification has occurred. A substantial portion of δ15N-NO3- demonstrated complex sources of NO3-. Compared with those of CSW, the NO3- compositions of the OSW approached to those of the RW due to river recharge and discharge, and were greatly affected by anthropogenic activities. The proportional contribution of manure and sewage in the OSW was found to be the highest with a mean value of 39.5 % ± 12.3 %, which was followed by that of mine drainage (mean: 22.1 % ± 13.1 %), chemical fertilizer (mean: 17.5 % ± 10.6 %), and soil organic nitrogen (mean: 17.5 % ± 11.6 %). In the RW, the highest mean contribution of manure sewage was 35.2 % ± 9.7 %, which was followed by that of chemical fertilizer (mean: 29.3 % ± 7.2 %), mine drainage (mean: 23.4 % ± 13.0 %), and soil organic nitrogen (mean: 10.9 % ± 8.3 %). In contrast, the contribution of chemical fertilizer to the CSW was the highest with a mean value of 33.9 % ± 13.6 %, which was followed by that of soil organic nitrogen (mean: 26.5 % ± 13.8 %), mine drainage (mean: 18.1 % ± 11.6 %). Therefore, NO3- in the surface water of the mining area primarily originates from chemical fertilizers and manure sewage. In addition, the contribution of mine drainage to nitrate in the study area indicates the potential impact of mining activities on surface water. These findings highlight the value of classifying different types of surface water in tracing NO3- contamination sources, and provide relevant theoretical basis for tracing nitrate sources in other areas.


Assuntos
Nitratos , Poluentes Químicos da Água , Teorema de Bayes , China , Ecossistema , Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Poluentes Químicos da Água/análise
15.
Artigo em Inglês | MEDLINE | ID: mdl-34271194

RESUMO

The purpose of the study was to clone the sequences of myogenic regulatory factors in Acipenser dabryanus and explore the changes in their expression during starvation and refeeding in A. dabryanus muscle. One hundred twenty fish (60.532 ± 0.284 g) were randomly assigned to four groups (fasted for 0, 3, 7 or 14 d and then refed for 14 d). Our predictions showed that the coding sequences of myod1, myf5, myog and myf6 in A. dabryanus encoded 275, 248, 248 and 243 amino acids, respectively, and the expression of the four genes was the highest in muscle. During fasting, the expression of myod1 in muscle was significantly decreased in the 14 d group. The expressions of myf5 and myf6 were increased significantly at first and then decreased with prolonged starvation time. The expression of myog in the 14 d group was significantly decreased compared with other groups (P < 0.05). During refeeding, the highest values of myod1 and myf6 expression were found in the 3 d group (P < 0.05).The expressions of myf5 and myog in 0 d and 3 d group were significantly higher than those in 7 d and 14 d group (P < 0.05). These results indicate that myogenic regulatory factors (MRFs) play important roles in muscle growth and development in A. dabryanus. The inhibition of long-term starvation (14 d) on the expression of myogenic regulatory factors is probably one of the reasons why it can not achieve full compensation for growth.


Assuntos
Comportamento Alimentar , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fatores de Regulação Miogênica/metabolismo , Inanição , Animais , Proteínas de Peixes/genética , Peixes , Proteínas Musculares/genética , Fatores de Regulação Miogênica/genética , Distribuição Tecidual
16.
Br J Nutr ; 126(5): 695-707, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33143764

RESUMO

The aim of this study was to explore the effects and mechanisms of different starvation treatments on the compensatory growth of Acipenser dabryanus. A total of 120 fish (60·532 (sem 0·284) g) were randomly assigned to four groups (fasting 0, 3, 7 or 14 d and then refed for 14 d). During fasting, middle body weight decreased significantly with prolonged starvation. The whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had been effected with varying degrees of changes. The growth hormone (GH) level in serum was significantly increased in 14D; however, insulin-like growth factor-1 (IGF-1) showed the opposite trend. The neuropeptide Y (npy) mRNA level in brain was significantly improved in 7D; peptide YY (pyy) mRNA level in intestine was significantly decreased during fasting. After refeeding, the final body weight, percentage weight gain, specific growth rate, feed intake, feed efficiency and protein efficiency ratio showed no difference between 0D and 3D. The changes of whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had taken place in varying degrees. GH levels in 3D and 7D were significantly higher than those in the 0D; the IGF-1 content decreased significantly during refeeding. There was no significant difference in npy and pyy mRNA levels. These results indicated that short-term fasting followed by refeeding resulted in full compensation and the physiological and biochemical effects on A. dabryanus were the lowest after 3 d of starvation and 14 d of refeeding. Additionally, compensation in A. dabryanus may be mediated by appetite genes and GH, and the degree of compensation is also affected by the duration of starvation.


Assuntos
Apetite , Peixes , Hormônio do Crescimento , Fator de Crescimento Insulin-Like I , Inanição , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso Corporal , Digestão , Peixes/crescimento & desenvolvimento , Peixes/fisiologia , Fator de Crescimento Insulin-Like I/genética , RNA Mensageiro
17.
Dev Comp Immunol ; 116: 103934, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33242569

RESUMO

Hucho bleekeri is a glacial relict and critically endangered fish restricted to the Yangtze River drainage in China. The lack of basic genomic information and immune characteristics will hinder the way toward protecting this species. In the present study, we conducted the first transcriptome analysis of H. bleekeri using the combination of SMRT and Illumina sequencing technology. Transcriptome sequencing generated a total of 93,330 non-redundant full-length unigenes with a mean length of 3072 bp. A total of 92,472 (99.08%) unigenes were annotated in at least one of the Nr protein, Swiss-Prot, KEGG, KOG, GO, Nt and Pfam databases. KEGG analysis showed that a total of 7240 unigenes belonging to 28 immune pathways were annotated to the immune system category. Meanwhile, differentially expressed genes between mucosa-associated tissues (skin, gill and hindgut) and systemic-immune tissues (spleen, head kidney and liver) were obtained. Importantly, genes participating in diverse immune signalling pathways and their expression profiles in H. bleekeri were discussed. In addition, a large number of long non-coding RNAs (lncRNAs) and simple sequence repeats (SSRs) were obtained in the H. bleekeri transcriptome. The present study will provide basic genomic information for H. bleekeri and for further research on analysing the characteristics of both the innate and adaptive immune systems of this critically endangered species.


Assuntos
Salmonidae/genética , Transcriptoma , Animais , China , Espécies em Perigo de Extinção , Perfilação da Expressão Gênica , Repetições de Microssatélites , Mucosa/imunologia , RNA Longo não Codificante/genética , Salmonidae/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-32248074

RESUMO

In vertebrates, skin pigmentation is the most diverse phenotypic trait, and it is produced by a complex biological process that is often genetically controlled. Recently, two different colors (the typical brown and orange varieties) of Triplophysa siluroides, a species restricted to Yellow River drainage in China, were discovered. In the present study, the skin, brain and liver transcriptomes of T. siluroides of both colors were sequenced to search for genes related to skin pigmentation. Transcriptome sequencing generated 1,484,197,774 clean reads, resulting in a total of 222.6 Gb of sequence. The reads were assembled into 470,788 unigenes with a mean length of 1550 bp and an N50 size of 2944 bp. Functional annotation of the unigene dataset showed that 214,507, 304,161, 112,886, 179,074, 180,064, 184,837 and 82,081 unigenes were significantly matched to entries in the Nr protein, Nt, KO, Swiss-Prot, Pfam, GO and KOG databases, respectively. A differential expression analysis revealed that 2774, 3552 and 1529 unigenes were upregulated and 2720, 2663 and 1103 unigenes were downregulated in the skin, brain and liver of orange-skinned T. siluroides, respectively. Several genes that play key roles in pigmentation, i.e., Agouti, Slc45a2, Cbs, Mift and Slc7a11, showed significantly differential expression between brown and orange fish. In addition, we detected 158,863 simple sequence repeats (SSRs) in the T. siluroides transcriptome, and a total of 201,338 single-nucleotide polymorphisms (SNPs) were discovered in the different transcriptomes. The present results will facilitate further study of the molecular mechanisms of skin pigmentation and marker-assisted breeding of fish with valuable skin colors.


Assuntos
Cipriniformes/genética , Transcriptoma , Animais , Cipriniformes/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Pigmentação da Pele
19.
Dev Comp Immunol ; 103: 103494, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31513821

RESUMO

The major histocompatibility complex (MHC) is a key player in the regulation of immune responses through presenting foreign antigens to T lymphocytes. In this study, three MHC genes, namely, MHC I α, II α, II ß and the II invariant chain (Ii), were identified and characterized in the critically endangered Dabry's sturgeon (Acipenser dabryanus). A tissue distribution study showed that the MHC and Ii transcripts were widely expressed in various tissues. The highest expression levels of MHC I α, II α and Ii were found in the gill, while MHC II ß was primarily expressed in the spleen. Challenge of A. dabryanus with a pathogenic bacterium in vivo resulted in significant upregulation of both MHC and Ii expression, indicating potential roles of these genes in immune response. Phylogenetic analysis showed that A. dabryanus MHC grouped with other teleost MHC genes and sequences from Polyodon spathula and A. dabryanus had an intermingling of alleles. According to the split time between paddlefishes and sturgeons, this result indicated that trans-species MHC lineages in Chondrostei were much older than those in tetrapods. The molecular polymorphisms of the complete open reading frame regions of the MHC genes were analysed in several A. dabryanus individuals. MHC II α and II ß were highly polymorphic in different individuals, while MHC I α was more conserved. The ratio of non-synonymous substitution occurred at a significantly higher frequency than synonymous substitution in peptide-binding regions (PBR) of MHC II α and II ß, demonstrating the existence of positive selection at peptide-binding sites. Our study suggested potential roles of the MHC chains in immune response to pathogen microbial infection, and the numerous alleles identified in this study will help further genetic management and molecular marker-assisted selective breeding programmes in A. dabryanus.


Assuntos
Espécies em Perigo de Extinção , Peixes/genética , Complexo Principal de Histocompatibilidade/genética , Sequência de Aminoácidos , Animais , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Peixes/classificação , Peixes/imunologia , Expressão Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade/metabolismo , Filogenia , Polimorfismo Genético , Alinhamento de Sequência , Distribuição Tecidual
20.
Fish Shellfish Immunol ; 88: 207-216, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30807859

RESUMO

Antimicrobial peptides (AMPs) play essential roles in the innate immune system to protect against a wide variety of pathogens in aquatic environments. In this study, three very important AMPs, cathelicidin, hepcidin and defensin, were identified in the critically endangered Acipenser dabryanus. The full-length cDNA sequences of these three AMPs were identified from transcriptome sequencing and the rapid amplification of cDNA ends (RACE) technique. Phylogenetic analysis showed that cathelicidin formed a clade with the other members of the cathelicidin family, and similar results were obtained for hepcidin. The A. dabryanus ß-defensin belonged to the fish class 2 ß-defensins. A tissue distribution study showed that the three AMP transcripts could be detected constitutively in various tissues. The highest expression levels of cathelicidin and hepcidin were found in the liver, while defensin was primarily expressed in the skin. Bacterial challenge in vivo revealed significant changes in the gene expression of the three AMPs at both mucosal sites and systemic sites. Striking upregulation of cathelicidin and hepcidin was observed in the skin at 12 h post-challenge, with increases of more than 7000-fold and 1000-fold, respectively, compared to the control, and the expression of defensin mRNA was remarkably elevated in the hindgut (by 230-fold at 6 h post-challenge). Moreover, according to the expression profiles of the AMPs post-challenge, we found that the mucosal immune response occurred earlier than the systemic immune response following bacterial infection. Our results suggest that these three novel AMPs may play important roles in the innate immune system of A. dabryanus to protect against invading pathogens, especially during the mucosal immune response.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peixes/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , DNA Complementar , Edwardsiella tarda , Espécies em Perigo de Extinção , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/isolamento & purificação , Peixes/genética , Peixes/microbiologia , Hepcidinas/genética , Hepcidinas/isolamento & purificação , Imunidade Inata , Filogenia , Análise de Sequência de DNA , beta-Defensinas/genética , beta-Defensinas/isolamento & purificação , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...