Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(17)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37681860

RESUMO

Androgen has been shown to regulate male physiological activities and cancer proliferation. It is used to antagonize estrogen-induced proliferative effects in breast cancer cells. However, evidence indicates that androgen can stimulate cancer cell growth in estrogen receptor (ER)-positive and ER-negative breast cancer cells via different types of receptors and different mechanisms. Androgen-induced cancer growth and metastasis link with different types of integrins. Integrin αvß3 is predominantly expressed and activated in cancer cells and rapidly dividing endothelial cells. Programmed death-ligand 1 (PD-L1) also plays a vital role in cancer growth. The part of integrins in action with androgen in cancer cells is not fully mechanically understood. To clarify the interactions between androgen and integrin αvß3, we carried out molecular modeling to explain the potential interactions of androgen with integrin αvß3. The androgen-regulated mechanisms on PD-L1 and its effects were also addressed.


Assuntos
Androgênios , Antígeno B7-H1 , Masculino , Humanos , Androgênios/farmacologia , Células Endoteliais , Integrina alfaVbeta3 , Transformação Celular Neoplásica
2.
Am J Transl Res ; 15(7): 4504-4520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560206

RESUMO

OBJECTIVES: Diabetic nephropathy (DN) is one of the most prevalent secondary complications associated with diabetes mellitus. Decades of research have implicated multiple pathways in the etiology and pathophysiology of diabetic nephropathy. There has been no reliable predictive biomarkers for the onset or progression of DN and no successful treatments are available. METHODS: In the present study, we explored the datasets of RNA sequencing data from patients with Type II diabetes mellitus (T2DM)-induced nephropathy to identify a novel gene signature. We explored the target bioactive compounds identified from Azanza garckeana, a medicinal plant commonly used by the traditional treatment of diabetes nephropathy. RESULTS: Our analysis identified lymphotoxin beta (LTB), SRY-box transcription factor 4 (SOX4), SOX9, and WAP four-disulfide core domain protein 2 (WFDC2) as novel signatures of T2DM-induced nephropathy. Additional analysis revealed the pathological involvement of the signature in cell-cell adhesion, immune, and inflammatory responses during diabetic nephropathy. Molecular docking and dynamic simulation at 100 ns conducted studies revealed that among the three compounds, Terpinen-4-ol exhibited higher binding efficacies (binding energies (ΔG) = -3.9~5.5 kcal/mol) against the targets. The targets, SOX4, and SOX9 demonstrated higher druggability towards the three compounds. WFDC2 was the least attractive target for the compounds. CONCLUSION: The present study was relevant in the diagnosis, prognosis, and treatment follow up of patients with diabetes induced nephropathy. The study provided an insight into the therapeutic application of the bioactive principles from Azanza garckeana. Continued follow-up invitro validations study are ongoing in our laboratory.

3.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677621

RESUMO

Our previous study found that 2-phenyl-4-quinolone (2-PQ) derivatives are antimitotic agents, and we adopted the drug design concept of scaffold hopping to replace the 2-aromatic ring of 2-PQs with a 4-aromatic ring, representing 4-phenyl-2-quinolones (4-PQs). The 4-PQ compounds, whose structural backbones also mimic analogs of podophyllotoxin (PPT), maybe a new class of anticancer drugs with simplified PPT structures. In addition, 4-PQs are a new generation of anticancer lead compounds as apoptosis stimulators. On the other hand, previous studies showed that 4-arylcoumarin derivatives with 5-, 6-, and 7-methoxy substitutions displayed remarkable anticancer activities. Therefore, we further synthesized a series of 5-, 6-, and 7-methoxy-substituted 4-PQ derivatives (19-32) by Knorr quinoline cyclization, and examined their anticancer effectiveness. Among these 4-PQs, compound 22 demonstrated excellent antiproliferative activities against the COLO205 cell line (50% inhibitory concentration (IC50) = 0.32 µM) and H460 cell line (IC50 = 0.89 µM). Furthermore, we utilized molecular docking studies to explain the possible anticancer mechanisms of these 4-PQs by the docking mode in the colchicine-binding pocket of the tubulin receptor. Consequently, we selected the candidate compounds 19, 20, 21, 22, 25, 27, and 28 to predict their absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles. Pharmacokinetics (PKs) indicated that these 4-PQs displayed good drug-likeness and bioavailability, and had no cardiotoxic side effects or carcinogenicity, but we detected risks of drug-drug interactions and AMES toxicity (mutagenic). However, structural modifications of these 4-PQs could improve their PK properties and reduce their side effects, and their promising anticancer activities attracted our attention for further studies.


Assuntos
Antineoplásicos , Relação Estrutura-Atividade , 4-Quinolonas/farmacologia , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Podofilotoxina/farmacologia , Estrutura Molecular , Proliferação de Células , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga
4.
Front Cell Dev Biol ; 10: 862045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111333

RESUMO

Reduced fertility associated with normal aging may reflect the over-maturity of oocytes. It is increasingly important to reduce aging-induced infertility since recent trends show people marrying at later ages. 2,3,5,4'-Tetrahydroxystilbene-2-O-ß-D-glucoside (THSG), a polyphenol extracted from Polygonum multiflorum, has been reported to have anti-inflammatory and anti-aging properties. To evaluate whether THSG can reduce aging-related ovarian damage in a female mouse model of aging, THSG was administered by gavage at a dose of 10 mg/kg twice weekly, starting at 4 weeks of age in a group of young mice. In addition, the effect of THSG in a group of aged mice was also studied in mice starting at 24 weeks of age. The number of oocytes in the THSG-fed group was higher than in the untreated control group. Although the percentage of secondary polar bodies (PB2) decreased during aging in the THSG-fed group, it decreased much more slowly than in the age-matched control group. THSG administration increased the quality of ovaries in young mice becoming aged. Western blotting analyses also indicated that CYP19, PR-B, and ER-ß expressions were significantly increased in 36-week-old mice. THSG also increased oocyte numbers in aged mice compared to mice without THSG fed. Studies of qPCR and immunohistochemistry (IHC) analyses of ovaries in the aged mice groups were conducted. THSG increased gene expression of anti-Müllerian hormone (AMH), a biomarker of oocyte number, and protein accumulation in 40-week-old mice. THSG increased the expression of pgc1α and atp6, mitochondrial biogenesis-related genes, and their protein expression. THSG also attenuated the fading rate of CYP11a and CYP19 associated with sex hormone synthesis. And THSG maintains a high level of ER-ß expression, thereby enhancing the sensitivity of estrogen. Our findings indicated that THSG increased or extended gene expression involved in ovarian maintenance and rejuvenation in young and aged mice. On the other hand, THSG treatments significantly maintained oocyte quantity and quality in both groups of young and aged mice compared to each age-matched control group. In conclusion, THSG can delay aging-related menopause, and the antioxidant properties of THSG may make it suitable for preventing aging-induced infertility.

5.
J Biomed Sci ; 29(1): 41, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705962

RESUMO

Heteronemin (Haimian jing) is a sesterterpenoid-type natural marine product that is isolated from sponges and has anticancer properties. It inhibits cancer cell proliferation via different mechanisms, such as reactive oxygen species (ROS) production, cell cycle arrest, apoptosis as well as proliferative gene changes in various types of cancers. Recently, the novel structure and bioactivity evaluation of heteronemin has received extensive attention. Hormones control physiological activities regularly, however, they may also affect several abnormalities such as cancer. L-Thyroxine (T4), steroid hormones, and epidermal growth factor (EGF) up-regulate the accumulation of checkpoint programmed death-ligand 1 (PD-L1) and promote inflammation in cancer cells. Heteronemin suppresses PD-L1 expression and reduces the PD-L1-induced proliferative effect. In the current review, we evaluated research and evidence regarding the antitumor effects of heteronemin and the antagonizing effects of non-peptide hormones and growth factors on heteronemin-induced anti-cancer properties and utilized computational molecular modeling to explain how these ligands interacted with the integrin αvß3 receptors. On the other hand, thyroid hormone deaminated analogue, tetraiodothyroacetic acid (tetrac), modulates signal pathways and inhibits cancer growth and metastasis. The combination of heteronemin and tetrac derivatives has been demonstrated to compensate for anti-proliferation in cancer cells under different circumstances. Overall, this review outlines the potential of heteronemin in managing different types of cancers that may lead to its clinical development as an anticancer agent.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Terpenos/química , Terpenos/farmacologia , Hormônios Tireóideos
6.
Front Cell Dev Biol ; 10: 829788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237605

RESUMO

Doxycycline, an antibiotic, displays the inhibition of different signal transduction pathways, such as anti-inflammation and anti-proliferation, in different types of cancers. However, the anti-cancer mechanisms of doxycycline via integrin αvß3 are incompletely understood. Integrin αvß3 is a cell-surface anchor protein. It is the target for estrogen, androgen, and thyroid hormone and plays a pivotal role in the proliferation, migration, and angiogenic process in cancer cells. In our previous study, thyroxine hormones can interact with integrin αvß3 to activate the extracellular signal-regulated kinase 1/2 (ERK1/2), and upregulate programmed death-ligand 1 (PD-L1) expression. In the current study, we investigated the inhibitory effects of doxycycline on proliferation in two breast cancer cell lines, MCF-7 and MDA-MB-231 cells. Doxycycline induces concentration-dependent anti-proliferation in both breast cancer cell lines. It regulates gene expressions involved in proliferation, pro-apoptosis, and angiogenesis. Doxycycline suppresses cell cyclin D1 (CCND1) and c-Myc which play crucial roles in proliferation. It also inhibits PD-L1 gene expression. Our findings show that modulation on integrin αvß3 binding activities changed both thyroxine- and doxycycline-induced signal transductions by an integrin αvß3 inhibitor (HSDVHK-NH2). Doxycycline activates phosphorylation of focal adhesion kinase (FAK), a downstream of integrin, but inhibits the ERK1/2 phosphorylation. Regardless, doxycycline-induced FAK phosphorylation is blocked by HSDVHK-NH2. In addition, the specific mechanism of action associated with pERK1/2 inhibition via integrin αvß3 is unknown for doxycycline treatment. On the other hand, our findings indicated that inhibiting ERK1/2 activation leads to suppression of PD-L1 expression by doxycycline treatment. Furthermore, doxycycline-induced gene expressions are disturbed by a specific integrin αvß3 inhibitor (HSDVHK-NH2) or a mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (ERK) kinase (MAPK/ERK, MEK) inhibitor (PD98059). The results imply that doxycycline may interact with integrin αvß3 and inhibits ERK1/2 activation, thereby regulating cell proliferation and downregulating PD-L1 gene expression in estrogen receptor (ER)-negative breast cancer MDA-MB-231 cells.

7.
PLoS One ; 12(9): e0185021, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28945763

RESUMO

BACKGROUND: Chemotherapy insensitivity continues to pose significant challenges for treating non-small cell lung cancer (NSCLC). The purposes of this study were to investigate whether 3,6-dimethoxy-1,4,5,8-phenanthrenetetraone (NCKU-21) has potential activity to induce effective toxicological effects in different ethnic NSCLC cell lines, A549 and CL1-5 cells, and to examine its anticancer mechanisms. METHODS: Mitochondrial metabolic activity and the cell-cycle distribution were analyzed using an MTT assay and flow cytometry in NCKU-21-treated cells. NCKU-21-induced cell apoptosis was verified by Annexin V-FITC/propidium iodide (PI) double-staining and measurement of caspase-3 activity. Western blotting and wound-healing assays were applied to respectively evaluate regulation of signaling pathways and cell migration by NCKU-21. Molecular interactions between target proteins and NCKU-21 were predicted and performed by molecular docking. A colorimetric screening assay kit was used to evaluate potential regulation of matrix metalloproteinase-9 (MMP-9) activity by NCKU-21. RESULTS: Results indicated that NCKU-21 markedly induced cytotoxic effects that reduced cell viability via cell apoptosis in tested NSCLC cells. Activation of AMP-activated protein kinase (AMPK) and p53 protein expression also increased in both NSCLC cell lines stimulated with NCKU-21. However, repression of PI3K-AKT activation by NCKU-21 was found in CL1-5 cells but not in A549 cells. In addition, increases in phosphatidylserine externalization and caspase-3 activity also confirmed the apoptotic effect of NCKU-21 in both NSCLC cell lines. Moreover, cell migration and translational levels of the gelatinases, MMP-2 and MMP-9, were obviously reduced in both NSCLC cell lines after incubation with NCKU-21. Experimental data obtained from molecular docking suggested that NCKU-21 can bind to the catalytic pocket of MMP-9. However, the in vitro enzyme activity assay indicated that NCKU-21 has the potential to increase MMP-9 activity. CONCLUSIONS: Our results suggest that NCKU-21 can effectively reduce cell migration and induce apoptosis in A549 and CL1-5 cells, the toxicological effects of which may be partly modulated through PI3K-AKT inhibition, AMPK activation, an increase in the p53 protein, and gelatinase inhibition.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Fenantrenos/uso terapêutico , Células A549 , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Caspase 3/metabolismo , Linhagem Celular Tumoral , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Mitocôndrias/efeitos dos fármacos , Simulação de Acoplamento Molecular
8.
Biomed Pharmacother ; 82: 649-59, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27470408

RESUMO

A newly synthesized Indeno[1,2-c]quinoline derivative, which has previously been found to potentially trap DNA-topoisomerase cleavage complexes more effectively than camptothecin, could effectively inhibit the proliferation of a variety of cancers, such as breast cancer treated with TCH1030. In this study, we further explore the activity of the TCH1036, TCH1259 and TCH1030 compounds in suppressing the growth of human brain malignant glioma (GBM) 8401 cells, in addition to elucidating the related mechanisms. According to tests of cytotoxicity, the GBM cells were more sensitive to the inhibitory effects of the TCH1036 compound than to those of the other two compounds. Moreover, the accumulation of GBM cells in the sub-G1 and G2/M phases was clearly induced by the TCH1036 compound in a dose-dependent manner. A screening of the majority of histone-modifier enzymes indicated that the expression of Suv39h1 in the GBM cells was attenuated by treatment with each of the TCH compounds, an observation which was further confirmed by Western blotting. The increase in active-form caspase 3 in the GBM cells treated with TCH compounds caused a high degree of poly (ADP-ribose) polymerase (PARP) cleavage and also enhanced the high ratio of hypodiploid GBM cells in the sub-G1 phase. In molecular docking simulations, it was observed that the stable forms of the TCH compounds could successfully insert into the catalytic pocket of PARP, with the highest affinity being between PARP and the TCH1036 compound. These findings suggested that the TCH1036 compound would be a promising compound in the treatment of brain malignant glioma.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Metiltransferases/metabolismo , Oximas/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Quinolinas/farmacologia , Proteínas Repressoras/metabolismo , Neoplasias Encefálicas/genética , Domínio Catalítico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Humanos , Metiltransferases/genética , Simulação de Acoplamento Molecular , Oximas/química , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/genética , Quinolinas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética
9.
Eur J Med Chem ; 110: 98-114, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26820553

RESUMO

In our continued focus on 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole (YC-1) analogs, we synthesized a novel series of 3,9-substituted α-carboline derivatives and evaluated the new compounds for antiproliferactive effects. Structure activity relationships revealed that a COOCH3 or CH2OH group at position-3 and substituted benzyl group at position-9 of the α-carboline nucleus were crucial for maximal activity. The most active compound, 11, showed high levels of cytotoxicity against HL-60, COLO 205, Hep 3B, and H460 cells with IC50 values of 0.3, 0.49, 0.7, and 0.8 µM, respectively. The effect of compound 11 on the cell cycle distribution demonstrated G2/M arrest in COLO 205 cells. Furthermore, mechanistic studies indicated that compound 11 induced apoptosis by activating death receptor and mitochondria dependent apoptotic signaling pathways in COLO 205 cells. The new 3,9-substituted α-carboline derivatives exhibited excellent anti-proliferative activities, and compound 11 can be used as a promising pro-apoptotic agent for future development of new antitumor agents.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carbolinas/química , Carbolinas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Reto/efeitos dos fármacos , Reto/patologia , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 25(18): 3873-7, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26235951

RESUMO

In our previous studies on 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole (YC-1) analogs, we synthesised numerous substituted carbazole and α-carboline derivatives, which exhibited anticancer activity. In this study, we designed and synthesised a series of 3,9-substituted ß-carbolines, by replacing the tricyclic rings of carbazole and α-carboline derivatives with isosteric ß-carboline, and evaluated anticancer activity. We observed that 9-(2-methoxybenzyl)-ß-carboline-3-carboxylic acid (11a) inhibited the growth of HL-60 cells by inducing apoptosis, with a half maximal inhibitory concentration of 4.0 µM. Our findings indicate that ß-carboline derivatives can be used as lead compounds for developing novel antitumor agents.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Carbolinas/química , Carbolinas/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carbolinas/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
11.
Br J Pharmacol ; 172(5): 1195-221, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25363404

RESUMO

BACKGROUND AND PURPOSE: 4-Phenylquinolin-2(1H)-one (4-PQ) derivatives can induce cancer cell apoptosis. Additional new 4-PQ analogs were investigated as more effective, less toxic antitumour agents. EXPERIMENTAL APPROACH: Forty-five 6,7,8-substituted 4-substituted benzyloxyquinolin-2(1H)-one derivatives were synthesized. Antiproliferative activities were evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliun bromide assay and structure-activity relationship correlations were established. Compounds 9b, 9c, 9e and 11e were also evaluated against the National Cancer Institute-60 human cancer cell line panel. Hoechst 33258 and Annexin V-FITC/PI staining assays were used to detect apoptosis, while inhibition of microtubule polymerization was assayed by fluorescence microscopy. Effects on the cell cycle were assessed by flow cytometry and on apoptosis-related proteins (active caspase-3, -8 and -9, procaspase-3, -8, -9, PARP, Bid, Bcl-xL and Bcl-2) by Western blotting. KEY RESULTS: Nine 6,7,8-substituted 4-substituted benzyloxyquinolin-2(1H)-one derivatives (7e, 8e, 9b, 9c, 9e, 10c, 10e, 11c and 11e) displayed high potency against HL-60, Hep3B, H460, and COLO 205 cancer cells (IC50 < 1 µM) without affecting Detroit 551 normal human cells (IC50 > 50 µM). Particularly, compound 11e exhibited nanomolar potency against COLO 205 cancer cells. Mechanistic studies indicated that compound 11e disrupted microtubule assembly and induced G2/M arrest, polyploidy and apoptosis via the intrinsic and extrinsic signalling pathways. Activation of JNK could play a role in TRAIL-induced COLO 205 apoptosis. CONCLUSION AND IMPLICATIONS: New quinolone derivatives were identified as potential pro-apoptotic agents. Compound 11e could be a promising lead compound for future antitumour agent development.


Assuntos
Antineoplásicos/farmacologia , Quinolonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade
12.
Bioorg Med Chem ; 21(17): 5064-75, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23867385

RESUMO

Novel 6,7-methylenedioxy-4-substituted phenylquinolin-2(1H)-one derivatives 12a-n were designed and prepared through an intramolecular cyclization reaction and evaluated for in vitro anticancer activity. Among the synthesized compounds, 6,7-methylenedioxy-4-(2,4-dimethoxyphenyl)quinolin-2(1H)-one (12e) displayed potent cytotoxicity against several different tumor cell lines at a sub-micromolar level. Furthermore, results of fluorescence-activated cell sorting (FACS) analysis suggested that 12e induced cell cycle arrest in the G2/M phase accompanied by apoptosis in HL-60 and H460 cells. This action was confirmed by Hoechst staining and caspase-3 activation. Due to their easy synthesis and remarkable biological activities, 4-phenylquinolin-2(1H)-one analogs (4-PQs) are promising new anticancer leads based on the quinoline scaffold. Accordingly, compound 12e was identified as a new lead compound that merits further optimization and development as an anticancer candidate.


Assuntos
Antineoplásicos/síntese química , Desenho de Fármacos , Quinolonas/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HL-60 , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Quinolonas/síntese química , Quinolonas/toxicidade , Relação Estrutura-Atividade
13.
J Biomed Sci ; 17: 60, 2010 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-20653976

RESUMO

BACKGROUND: The cationic peptide antibiotic polymyxin has recently been reevaluated in the treatment of severe infections caused by gram negative bacteria. METHODS: In this study, the genetic determinants for capsular polysaccharide level and lipopolysaccharide modification involved in polymyxin B resistance of the opportunistic pathogen Klebsiella pneumoniae were characterized. The expressional control of the genes responsible for the resistance was assessed by a LacZ reporter system. The PmrD connector-mediated regulation for the expression of pmr genes involved in polymyxin B resistance was also demonstrated by DNA EMSA, two-hybrid analysis and in vitro phosphor-transfer assay. RESULTS: Deletion of the rcsB, which encoded an activator for the production of capsular polysaccharide, had a minor effect on K. pneumoniae resistance to polymyxin B. On the other hand, deletion of ugd or pmrF gene resulted in a drastic reduction of the resistance. The polymyxin B resistance was shown to be regulated by the two-component response regulators PhoP and PmrA at low magnesium and high iron, respectively. Similar to the control identified in Salmonella, expression of pmrD in K. pneumoniae was dependent on PhoP, the activated PmrD would then bind to PmrA to prolong the phosphorylation state of the PmrA, and eventually turn on the expression of pmr for the resistance to polymyxin B. CONCLUSIONS: The study reports a role of the capsular polysaccharide level and the pmr genes for K. pneumoniae resistance to polymyxin B. The PmrD connector-mediated pathway in governing the regulation of pmr expression was demonstrated. In comparison to the pmr regulation in Salmonella, PhoP in K. pneumoniae plays a major regulatory role in polymyxin B resistance.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Resistência Microbiana a Medicamentos/fisiologia , Klebsiella pneumoniae/fisiologia , Polimixina B/farmacologia , Animais , Linhagem Celular , Clonagem Molecular , Ensaio de Desvio de Mobilidade Eletroforética , Camundongos , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...