Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Genomics ; 8 Suppl 4: S3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26680271

RESUMO

BACKGROUND: High genetic heterogeneity in the hepatitis C virus (HCV) is the major challenge of the development of an effective vaccine. Existing studies for developing HCV vaccines have mainly focused on T-cell immune response. However, identification of linear B-cell epitopes that can stimulate B-cell response is one of the major tasks of peptide-based vaccine development. Owing to the variability in B-cell epitope length, the prediction of B-cell epitopes is much more complex than that of T-cell epitopes. Furthermore, the motifs of linear B-cell epitopes in different pathogens are quite different (e. g. HCV and hepatitis B virus). To cope with this challenge, this work aims to propose an HCV-customized sequence-based prediction method to identify B-cell epitopes of HCV. RESULTS: This work establishes an experimentally verified dataset comprising the B-cell response of HCV dataset consisting of 774 linear B-cell epitopes and 774 non B-cell epitopes from the Immune Epitope Database. An interpretable rule mining system of B-cell epitopes (IRMS-BE) is proposed to select informative physicochemical properties (PCPs) and then extracts several if-then rule-based knowledge for identifying B-cell epitopes. A web server Bcell-HCV was implemented using an SVM with the 34 informative PCPs, which achieved a training accuracy of 79.7% and test accuracy of 70.7% better than the SVM-based methods for identifying B-cell epitopes of HCV and the two general-purpose methods. This work performs advanced analysis of the 34 informative properties, and the results indicate that the most effective property is the alpha-helix structure of epitopes, which influences the connection between host cells and the E2 proteins of HCV. Furthermore, 12 interpretable rules are acquired from top-five PCPs and achieve a sensitivity of 75.6% and specificity of 71.3%. Finally, a conserved promising vaccine candidate, PDREMVLYQE, is identified for inclusion in a vaccine against HCV. CONCLUSIONS: This work proposes an interpretable rule mining system IRMS-BE for extracting interpretable rules using informative physicochemical properties and a web server Bcell-HCV for predicting linear B-cell epitopes of HCV. IRMS-BE may also apply to predict B-cell epitopes for other viruses, which benefits the improvement of vaccines development of these viruses without significant modification. Bcell-HCV is useful for identifying B-cell epitopes of HCV antigen to help vaccine development, which is available at http://e045.life.nctu.edu.tw/BcellHCV.


Assuntos
Biologia Computacional/métodos , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Hepacivirus/imunologia , Vacinas Virais/imunologia , Animais , Fenômenos Químicos , Epitopos de Linfócito B/química , Humanos , Internet , Modelos Moleculares , Estrutura Secundária de Proteína
2.
Bioinformatics ; 31(13): 2151-8, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25717191

RESUMO

MOTIVATION: The establishment of quantitative gene regulatory networks (qGRNs) through existing network component analysis (NCA) approaches suffers from shortcomings such as usage limitations of problem constraints and the instability of inferred qGRNs. The proposed GeNOSA framework uses a global optimization algorithm (OptNCA) to cope with the stringent limitations of NCA approaches in large-scale qGRNs. RESULTS: OptNCA performs well against existing NCA-derived algorithms in terms of utilization of connectivity information and reconstruction accuracy of inferred GRNs using synthetic and real Escherichia coli datasets. For comparisons with other non-NCA-derived algorithms, OptNCA without using known qualitative regulations is also evaluated in terms of qualitative assessments using a synthetic Saccharomyces cerevisiae dataset of the DREAM3 challenges. We successfully demonstrate GeNOSA in several applications including deducing condition-dependent regulations, establishing high-consensus qGRNs and validating a sub-network experimentally for dose-response and time-course microarray data, and discovering and experimentally confirming a novel regulation of CRP on AscG. AVAILABILITY AND IMPLEMENTATION: All datasets and the GeNOSA framework are freely available from http://e045.life.nctu.edu.tw/GeNOSA. CONTACT: syho@mail.nctu.edu.tw SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Escherichia coli/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética
3.
BMC Bioinformatics ; 15 Suppl 16: S4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25522279

RESUMO

BACKGROUND: Heme binding proteins (HBPs) are metalloproteins that contain a heme ligand (an iron-porphyrin complex) as the prosthetic group. Several computational methods have been proposed to predict heme binding residues and thereby to understand the interactions between heme and its host proteins. However, few in silico methods for identifying HBPs have been proposed. RESULTS: This work proposes a scoring card method (SCM) based method (named SCMHBP) for predicting and analyzing HBPs from sequences. A balanced dataset of 747 HBPs (selected using a Gene Ontology term GO:0020037) and 747 non-HBPs (selected from 91,414 putative non-HBPs) with an identity of 25% was firstly established. Consequently, a set of scores that quantified the propensity of amino acids and dipeptides to be HBPs is estimated using SCM to maximize the predictive accuracy of SCMHBP. Finally, the informative physicochemical properties of 20 amino acids are identified by utilizing the estimated propensity scores to be used to categorize HBPs. The training and mean test accuracies of SCMHBP applied to three independent test datasets are 85.90% and 71.57%, respectively. SCMHBP performs well relative to comparison with such methods as support vector machine (SVM), decision tree J48, and Bayes classifiers. The putative non-HBPs with high sequence propensity scores are potential HBPs, which can be further validated by experimental confirmation. The propensity scores of individual amino acids and dipeptides are examined to elucidate the interactions between heme and its host proteins. The following characteristics of HBPs are derived from the propensity scores: 1) aromatic side chains are important to the effectiveness of specific HBP functions; 2) a hydrophobic environment is important in the interaction between heme and binding sites; and 3) the whole HBP has low flexibility whereas the heme binding residues are relatively flexible. CONCLUSIONS: SCMHBP yields knowledge that improves our understanding of HBPs rather than merely improves the prediction accuracy in predicting HBPs.


Assuntos
Proteínas de Transporte/metabolismo , Dipeptídeos/metabolismo , Heme/metabolismo , Hemeproteínas/metabolismo , Pontuação de Propensão , Software , Teorema de Bayes , Sítios de Ligação , Proteínas de Transporte/química , Bases de Dados de Proteínas , Dipeptídeos/química , Heme/química , Proteínas Ligantes de Grupo Heme , Hemeproteínas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Conformação Proteica , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...