Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 469: 133934, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447370

RESUMO

It remains unclear how symbiotic microbes impact the growth of peanuts when they are exposed to the pollutants cadmium (Cd) and microplastics (MPs) simultaneously. This study aimed to investigate the effects of endophytic bacteria Bacillus velezens SC60 and arbuscular mycorrhizal fungus Rhizophagus irregularis on peanut growth and rhizosphere microbial communities in the presence of Cd at 40 (Cd40) or 80 (Cd80) mg kg-1 combined without MP or the presence of low-density polyethylene (LDPE) and poly butyleneadipate-co-terephthalate (PBAT). This study assessed soil indicators, plant parameters, and Cd accumulation indicators. Results showed that the application of R. irregularis and B. velezens significantly enhanced soil organic carbon and increased Cd content under the conditions of Cd80 and MPs co-pollution. R. irregularis and B. velezens treatment increased peanut absorption and the enrichment coefficient for Cd, with predominate concentrations localized in the peanut roots, especially under combined pollution by Cd and MPs. Under treatments with Cd40 and Cd80 combined with PBAT pollution, soil microbes Proteobacteria exhibited a higher relative abundance, while Actinobacteria showed a higher relative abundance under treatments with Cd40 and Cd80 combined with LDPE pollution. In conclusion, under the combined pollution conditions of MPs and Cd, the co-treatment of R. irregularis and B. velezens effectively immobilized Cd in peanut roots, impeding its translocation to the shoot.


Assuntos
Glomeromycota , Micorrizas , Poluentes do Solo , Cádmio/toxicidade , Microplásticos , Plásticos , Arachis , Carbono , Polietileno , Solo , Raízes de Plantas , Bactérias , Poluição Ambiental , Poluentes do Solo/toxicidade
3.
Ying Yong Sheng Tai Xue Bao ; 28(11): 3805-3814, 2017 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-29692126

RESUMO

Dryland wheat has gone through double selections, including natural and artificial selection, in the evolutionary process. During this process, artificial selection played a key role in variety domestication and improvement. This paper summarized a few relatively independent but interrelated issues including evolutionary characteristics, physiological plasticity, morphological plasticity and population attribute transition in dryland wheat under artificial selection. It provided an overview on physiological and ecological mechanism of dryland wheat adapting to stress conditions, and an outline of wheat evolution route. In the long-term evolutionary history of dryland wheat from diploid to hexaploid, natural selection acted as a key role for wheat adaptation to stress environments. With the intervention of artificial selection, the yield-oriented phenotyping has been continuously strengthened, and morphological characteristics of wheat tended to display a fine adaptation to adverse environments at population level. As a product of artificial selection, water and nutrient use efficiencies were improved constantly, and biomass allocation pattern showed the characteristics of lowering below-ground parts and increasing above-ground parts. In the meantime, the tolerance to density and high temperature stresses tended to be enhanced, while photosynthetic rate per unit area was decreased gradually. Dryland wheat production was a complex population process, rather than a simple individual performance. Artificial selection increased population fitness and individual reproductive allocation in dryland wheat, which in turn strengthened its coordination with environment, but weakened its attributes of natural population. This paper also drew an outline of dryland wheat evolution, and provided a few suggestions for breeding strategies and cultivation management of dryland wheat under climate change.


Assuntos
Adaptação Fisiológica , Fotossíntese , Triticum/crescimento & desenvolvimento , Biomassa , Água
4.
Int J Syst Evol Microbiol ; 65(10): 3558-3563, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26296667

RESUMO

Three novel strains, RITF741T, RITF1220 and RITF909, isolated from root nodules of Acacia melanoxylon in Guangdong Province of China, have been previously identified as members of the genus Mesorhizobium, displaying the same 16S rRNA gene RFLP pattern. Phylogenetic analysis of 16S rRNA gene sequences indicated that the three strains belong to the genus Mesorhizobium and had highest similarity (100.0 %) to Mesorhizobium plurifarium LMG 11892T. Phylogenetic analyses of housekeeping genes recA, atpD and glnII revealed that these strains represented a distinct evolutionary lineage within the genus Mesorhizobium. Strain RITF741T showed >73 % DNA­DNA relatedness with strains RITF1220 and RITF909, but < 60 % DNA­DNA relatedness with the closest type strains of recognized species of the genus Mesorhizobium. They differed from each other and from their closest phylogenetic neighbours by presence/absence of several fatty acids, or by large differences in the relative amounts of particular fatty acids. While showing distinctive features, they were generally able to utilize a wide range of substrates as sole carbon sources based on API 50CH and API 20NE tests. The three strains were able to form nodules with the original host Acacia melanoxylon and other woody legumes such as Acacia aneura, Albizia falcataria and Leucaena leucocephala. In conclusion, these strains represent a novel species belonging to the genus Mesorhizobium based on the data obtained in the present and previous studies, for which the name Mesorhizobium acaciae sp. nov. is proposed. The type strain is RITF741T ( = CCBAU 101090T = JCM 30534T), the DNA G+C content of which is 64.1 mol% (T m).


Assuntos
Acacia/microbiologia , Mesorhizobium/classificação , Filogenia , Nódulos Radiculares de Plantas/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Mesorhizobium/genética , Mesorhizobium/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Front Plant Sci ; 5: 787, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25628634

RESUMO

Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. "Longshu No. 3") plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars.

6.
Ying Yong Sheng Tai Xue Bao ; 24(8): 2369-76, 2013 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-24380361

RESUMO

Arbuscular mycorrhiza (AM) is one of the most widely distributed and the most important mutualistic symbionts in terrestrial ecosystems, playing a significant role in enhancing plant resistance to stresses, remediating polluted environments, and maintaining ecosystem stabilization and sustainable productivity. The structural characteristics of AM are the main indicators determining the mycorrhizal formation in root system, and have close relations to the mycorrhizal functions. This paper summarized the structural characteristics of arbuscules, vesicles, mycelia and invasion points of AM, and analyzed the relationships between the Arum (A) type arbuscules, Paris (P) type arbuscules, vesicles, and external mycelia and their functions in improving plant nutrient acquisition and growth, enhancing plant resistance to drought, waterlogging, salinity, high temperature, diseases, heavy metals toxicity, and promoting toxic organic substances decomposition and polluted and degraded soil remediation. The factors affecting the AM structure and functions as well as the action mechanisms of mycorrhizal functions were also discussed. This review would provide a basis for the systemic study of AM structural characteristics and functional mechanisms and for evaluating and screening efficient AM fungal species.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Micorrizas/citologia , Micorrizas/fisiologia
7.
Mycorrhiza ; 17(6): 527-535, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17406907

RESUMO

The aim of this study is to assess the mycorrhizal status of Eucalyptus plantations in south China and to determine the need for inoculation. In four provinces in south China, 155 plantations were sampled for sporocarps of ectomycorrhizal (ECM) fungi, spores of arbuscular mycorrhizal (AM) fungi, and mycorrhizas over 2 years. This study revealed a low above-ground diversity of ECM fungi consisting of 15 taxa fruiting beneath Eucalyptus plantations. The most common ECM genera were Scleroderma and Pisolithus, but they were infrequent. A total of 21 AM fungi, mostly Glomus species, were recognized from spores collected from eucalypt plantations. Four Glomus species were frequently present in soils, but spore density and relative abundance of AM fungi were generally low. Eucalypt roots from all plantation sites were poorly colonized by either ECM fungi or AM fungi. A bioassay with E. urophylla as a bait host, using soils collected from 11 eucalypt plantations, confirmed low levels of inoculum of both ECM and AM fungi in field soil. This is the first integrated study on the mycorrhizal status of eucalypt plantations in China. Findings from this research can be used to encourage adoption of mycorrhizal technology by eucalypt nurseries in the region. The potential of using spores of compatible ECM fungi or collections for forest nurseries is discussed.


Assuntos
Agricultura , Eucalyptus/microbiologia , Fungos/isolamento & purificação , Micorrizas , Basidiomycota/classificação , Basidiomycota/isolamento & purificação , Basidiomycota/fisiologia , China , Conservação dos Recursos Naturais/métodos , Eucalyptus/crescimento & desenvolvimento , Fungos/classificação , Fungos/fisiologia , Micorrizas/classificação , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Esporos Fúngicos/fisiologia
8.
Mycorrhiza ; 16(4): 251-259, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16534620

RESUMO

Plantation forestry with exotic trees in south China needs compatible symbionts to improve the growth of seedlings in nurseries and to enhance establishment and growth in the field. Scleroderma, a potentially suitable symbiont for inoculation, is not being used in containerized nurseries in the region due to poor knowledge of its host range. The ability of 15 collections of Scleroderma, nine from Australia and six from Asia, to colonize and promote growth of four important exotic plantation trees (Eucalyptus globulus Labill., Eucalyptus urophylla ST Blake, Pinus elliottii Engl., and Pinus radiata D. Don) was examined in a nursery potting mix. There was generally low host specificity of Scleroderma between tree genera. At 12 weeks after inoculation, 13 to 14 of the 15 spore collections formed ectomycorrhizas on seedlings of eucalypts or pines. The extent of colonization differed between spore treatments with two or four collections forming abundant mycorrhizas (>50% fine roots colonized) on E. globulus or E. urophylla, respectively, and three or five on P. radiata or P. elliottii, respectively. Three collections from Australia strongly colonized all hosts resulting in 26 to 100% of short roots being colonized. Chinese Scleroderma collections resulted in fewer mycorrhizas on eucalypts than on pines. Inoculation stimulated the growth (shoot height and dry weight) of eucalypt and pine seedlings by up to 105% where Scleroderma mycorrhizas developed. The results suggest that there is a need to source Scleroderma from outside China for inoculating eucalypts in Chinese nurseries whereas Chinese collections of Scleroderma could be used in pine nurseries. Further screening of Australian and Chinese Scleroderma should be performed in Chinese nurseries and in the field before final commercial decisions are made.


Assuntos
Eucalyptus/microbiologia , Micorrizas , Pinus/microbiologia , Agricultura/métodos , China , Eucalyptus/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...