Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Animals (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672366

RESUMO

DNA methylation represents a predominant epigenetic modification with broad implications in various biological functions. Its role is particularly significant in the process of collagen deposition, a fundamental aspect of dermal development in donkeys. Despite its critical involvement, the mechanistic insights into how DNA methylation influences collagen deposition in donkey skin remain limited. In this study, we employed whole genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) to investigate the epigenetic landscape and gene expression profiles in the dorsal skin tissues of Dezhou donkeys across three developmental stages: embryonic (YD), juvenile (2-year-old, MD), and mature (8-year-old, OD). Our analysis identified numerous differentially methylated genes that play pivotal roles in skin collagen deposition and overall skin maturation, including but not limited to COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, GLUL, SFRP2, FOSL1, SERPINE1, MMP1, MMP2, MMP9, and MMP13. Notably, we observed an inverse relationship between gene expression and DNA methylation proximal to transcription start sites (TSSs), whereas a direct correlation was detected in regions close to transcription termination sites (TTSs). Detailed bisulfite sequencing analyses of the COL1A1 promoter region revealed a low methylation status during the embryonic stage, correlating with elevated transcriptional activity and gene expression levels. Collectively, our findings elucidate key genetic markers associated with collagen deposition in the skin of Dezhou donkeys, underscoring the significant regulatory role of DNA methylation. This research work contributes to the foundational knowledge necessary for the genetic improvement and selective breeding of Dezhou donkeys, aiming to enhance skin quality attributes.

2.
Neurochem Res ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555337

RESUMO

Convulsive status epilepticus (CSE) is a common critical neurological condition that can lead to irreversible hippocampal neuron damage and cognitive dysfunction. Multiple studies have demonstrated the critical roles that long non-coding RNA Mir155hg plays in a variety of diseases. However, less is known about the function and mechanism of Mir155hg in CSE. Here we investigate and elucidate the mechanism underlying the contribution of Mir155hg to CSE-induced hippocampal neuron injury. By applying high-throughput sequencing, we examined the expression of differentially expressed genes in normal and CSE rats. Subsequent RT-qPCR enabled us to measure the level of Mir155hg in rat hippocampal tissue. Targeted knockdown of Mir155hg was achieved by the AAV9 virus. Additionally, we utilized HE and Tunel staining to evaluate neuronal injury. Immunofluorescence (IF), Golgi staining, and brain path clamping were also used to detect the synaptic plasticity of hippocampal neurons. Finally, through IF staining and Sholl analysis, we assessed the degree of microglial phagocytic function. It was found that the expression of Mir155hg was elevated in CSE rats. HE and Tunel staining results showed that Mir155hg knockdown suppressed the hippocampal neuron loss and apoptosis followed CSE. IF, Golgi staining and brain path clamp data found that Mir155hg knockdown enhanced neuronal synaptic plasticity. The results from IF staining and Sholl analysis showed that Mir155hg knockdown enhanced microglial phagocytosis. Our findings suggest that Mir155hg promotes CSE-induced hippocampal neuron injury by inhibiting microglial phagocytosis.

3.
Front Genet ; 15: 1335591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404668

RESUMO

The primary focus of donkey hide gelatin processing lies in the dermal layer of donkey hide due to its abundant collagen content. However, the molecular mechanism involved in collagen organization and skin development in donkey skin tissue across various developmental stages remains incomplete. The current study aims to investigate the transcriptomic screening of lncRNAs and mRNA associated with skin development and collagen organization across different ages in Dezhou donkeys' skin. In the pursuit of this objective, we used nine skin tissue samples obtained from Dezhou donkeys at various ages including 8-month fetal stage, followed by 2 and 8 years. RNA-seq analysis was performed for the transcriptomic profiling of differentially expressed genes (DEGs) and lncRNAs associated with skin development in different age groups. Our investigation revealed the presence of 6,582, 6,455, and 405 differentially expressed genes and 654, 789, and 29 differentially expressed LncRNAs within the skin tissues of Dezhou donkeys when comparing young donkeys (YD) vs. middle-aged donkeys (MD), YD vs. old donkeys (OD), and MD vs. OD, respectively. Furthermore, we identified Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type III Alpha 1 Chain (COL3A1), and Collagen Type VI Alpha 5 Chain (COL6A5) as key genes involved in collagen synthesis, with COL1A1 being subject to cis-regulation by several differentially expressed LncRNAs, including ENSEAST00005041187, ENSEAST00005038497, and MSTRG.17248.1, among others. Interestingly, collagen organizational and skin development linked pathways including Protein digestion and absorption, metabolic pathways, Phosphatidylinositol 3-Kinase-Protein Kinase B signaling pathway (PI3K-Akt signaling pathway), Extracellular Matrix-Receptor Interaction (ECM-receptor interaction), and Relaxin signaling were also reported across different age groups in Dezhou donkey skin. These findings enhance our comprehension of the molecular mechanisms underlying Dezhou donkey skin development and collagen biosynthesis and organization, thus furnishing a solid theoretical foundation for future research endeavors in this domain.

4.
Biomedicines ; 12(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397869

RESUMO

Disulfidoptosis, a novel form of cell death, is distinct from other well-known cell death mechanisms. Consequently, a profound investigation into disulfidoptosis elucidates the fundamental mechanisms underlying tumorigenesis, presenting promising avenues for therapeutic intervention. Comprehensive analysis of disulfidoptosis-associated gene (DRG) expression in pan cancer utilized TCGA, GEO, and ICGC datasets, including survival and Cox-regression analyses for prognostic evaluation. We analyzed the association between DRG expression and both immune cell infiltration and immune-related gene expression using the ESTIMATE and TISDIB datasets. We obtained our single-cell RNA sequencing (scRNA-seq) data from the GEO repository. Subsequently, we assessed disulfidoptosis activity in various cell types. Evaluation of immune cell infiltration and biological functions was analyzed via single-sample gene set enrichment (ssGSEA) and gene set variation analysis (GSVA). For in vitro validation experiments, the results from real-time PCR (RT-qPCR) and Western blot were used to explore the expression of SLC7A11 in hepatocellular carcinoma (HCC) tissues and different cancer cell lines, while siRNA-mediated SLC7A11 knockdown effects on HCC cell proliferation and migration were examined. Expression levels of DRGs, especially SLC7A11, were significantly elevated in tumor samples compared to normal samples, which was associated with poorer outcomes. Except for SLC7A11, DRGs consistently exhibited high CNV and SNV rates, particularly in HCC. In various tumors, DRGs were negatively associated with DNA promoter methylation. TME analyses further illustrated a negative correlation of DRG expression with ImmuneScore and StromalScore and a positive correlation with tumor purity. Our analysis unveiled diverse cellular subgroups within HCC, particularly focusing on Treg cell populations, providing insights into the intricate interplay of immune activation and suppression within the tumor microenvironment (TME). These findings were further validated through RT-qPCR, Western blot analyses, and immunohistochemical analyses. Additionally, the knockdown of SLC7A11 induced a suppression of proliferation and migration in HCC cell lines. In conclusion, our comprehensive pan-cancer analysis research has demonstrated the significant prognostic and immunological role of disulfidoptosis across a spectrum of tumors, notably HCC, and identified SLC7A11 as a promising therapeutic target.

5.
Endocr J ; 71(3): 233-244, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38233122

RESUMO

Dyslipidemia has been considered a risk factor for diabetic peripheral neuropathy. Proprotein convertase subtilisin-like/Kexin 9 inhibitor (PCSK9) inhibitors are a new type of lipid-lowering drug currently in clinical use. The role of PCSK9 in diabetic peripheral neuropathy is still unclear. In this study, the effect of alirocumab, a PCSK9 inhibitor, on the sciatic nerve in rats with diabetic peripheral neuropathy and its underlying mechanisms were investigated. The diabetic peripheral neuropathy rat model was established by using a high-fat diet combined with streptozotocin injection, and experimental subjects were divided into normal, diabetic peripheral neuropathy, and alirocumab groups. The results showed that Alirocumab improved nerve conduction, morphological changes, and small fiber deficits in rats with DPN, possibly related to its amelioration of oxidative stress and the inflammatory response.


Assuntos
Anticorpos Monoclonais Humanizados , Diabetes Mellitus , Neuropatias Diabéticas , Animais , Ratos , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/prevenção & controle , Inibidores de PCSK9 , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Nervo Isquiático , Subtilisina
6.
Eur Radiol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057594

RESUMO

BACKGROUND: Progression of non-target lesions (NTLs) after stenting has been reported and is associated with the triggering of an inflammatory response. The perivascular fat attenuation index (FAI) may be used as a novel imaging biomarker for the direct quantification of coronary inflammation. OBJECTIVES: To investigate whether FAI values can help identify changes in inflammation status in patients undergoing stent implantation, especially in NTLs. METHODS: Patients who underwent pre- and post-stenting coronary computed tomography angiography (CCTA) examination between January 2015 and February 2021 were consecutively enrolled. The pre- and post-stenting FAIs of the full coronary arteries were compared in both the non- and stent-implanted coronary arteries. Moreover, local FAI values were measured and compared between the NTLs and target lesions in the stent implantations. We also compared changes in plaque type and volume in NTLs before and after stenting. RESULTS: A total of 89 patients (mean age 61 years; male 59) were enrolled. The perivascular FAI values in the full coronary arteries decreased after stenting in both the non- and stent-implanted coronary arteries, similar to those in the target lesions. Conversely, the perivascular FAI values in the NTLs increased after stenting (p < 0.05). In addition, the plaque volumes significantly increased in the NTLs after stenting, regardless of whether they were non-calcified, mixed, or calcified (p < 0.05). CONCLUSION: Perivascular FAI values and plaque volumes increased in the NTLs after stenting. Perivascular FAI can be a promising imaging biomarker for monitoring coronary inflammation after stenting and facilitate long-term monitoring in clinical settings. CLINICAL RELEVANCE STATEMENT: Perivascular fat attenuation index, a non-invasive imaging biomarker, may help identify coronary arteries with high inflammation in non-target lesions and facilitate long-term monitoring, potentially providing an opportunity for more targeted treatment. KEY POINTS: • Perivascular fat attenuation index (FAI) values and plaque volumes increased in the non-target lesions (NTLs) after stenting, suggesting potential focal inflammation progression after stenting. However, stenting along with anti-inflammatory treatment ameliorated inflammation in the full coronary arteries. • Perivascular FAI, a non-invasive imaging biomarker, may help identify coronary arteries with high inflammation in NTLs and facilitate long-term monitoring, potentially providing an opportunity for more targeted treatment.

7.
Front Microbiol ; 14: 1289371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029159

RESUMO

Introduction: The Dezhou donkey, a prominent Chinese breed, is known for its remarkable size, rapid growth, and resilience to tough feeding conditions, and disease resistance. These traits are crucial in meeting the growing demand for Ejiao and donkey meat. Yeast polysaccharide (YPS), a functional polysaccharide complex known for its immune-enhancing and growth-promoting properties in livestock and poultry, remains relatively understudied in donkeys. Objectives: This study aimed to investigate the impact of YPS supplementation on lactating and growing Dezhou donkey jennies and foals. Materials and methods: Twelve 45-day-old Dezhou donkey foals and their jennies, matched for body weight and age, were randomly allocated to two dietary groups: a control group receiving a basal diet and an experimental group receiving the basal diet supplemented with 10 g/pen of YPS. The experiment was conducted over a 23-day period, during which donkey foals and lactating jennies were co-housed. Results and discussion: The findings revealed that YPS supplementation had no adverse effects on milk production or composition in Dezhou donkey jennies but significantly increased feed intake. Additionally, YPS was associated with increased plasma glucose and creatinine concentrations in foals, while tending to decrease alkaline phosphatase, white blood cell count, red blood cell count, and hemoglobin levels (p < 0.10). Immune indices demonstrated that YPS supplementation elevated the levels of immunoglobulin A (IgA) and immunoglobulin G (IgG) in jennies (p < 0.05) and increased complement component C4 concentrations in foals (p < 0.05). Moreover, YPS positively influenced the fecal microbiome, promoting the abundance of beneficial microorganisms such as Lactobacillus and Prevotella in donkey foals and Terriporobacter and Cellulosilyticum in jennies, all of which contribute to enhanced feed digestion. Additionally, YPS induced alterations in the plasma metabolome for both jennies and foals, with a predominant presence of lipids and lipid-like molecules. Notably, YPS increased the concentrations of specific lipid metabolites, including 13,14-Dihydro PGF2a, 2-Isopropylmalic acid, 2,3-Dinor-TXB2, Triterpenoids, Taurocholic acid, and 3b-Allotetrahydrocortisol, all of which are associated with improved animal growth. Conclusion: In conclusion, this study suggests that dietary supplementation of YPS enhances feed intake, boosts immunity by increasing immunoglobulin levels, stimulates the growth-promoting gut microbiota (Lactobacillus and Prevotella), and exerts no adverse effects on the metabolism of both Dezhou donkey jennies and foals.

8.
J Mol Med (Berl) ; 101(12): 1567-1585, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37804474

RESUMO

The ductus arteriosus (DA), bridging the aorta and pulmonary artery, immediately starts closing after birth. Remodeling of DA leads to anatomic obstruction to prevent repatency. Several histological changes, especially extracellular matrices (ECMs) deposition and smooth muscle cells (SMCs) migration bring to anatomic closure. The genetic etiology and mechanism of DA closure remain elusive. We have previously reported a novel copy number variant containing Vav2 in patent ductus arteriosus (PDA) patients, but its specific role in DA closure remains unknown. The present study revealed that the expression of Vav2 was reduced in human patent DA, and it was less enrichment in the adjacent aorta. Matrigel experiments demonstrated that Vav2 could promote SMC migration from PDA patient explants. Smooth muscle cells with Vav2 overexpression also presented an increased capacity in migration and downregulated contractile-related proteins. Meanwhile, SMCs with Vav2 overexpression exhibited higher expression of collagen III and lessened protein abundance of lysyl oxidase, and both changes are beneficial to DA remodeling. Overexpression of Vav2 resulted in increased activity of Rac1, Cdc42, and RhoA in SMCs. Further investigation noteworthily found that the above alterations caused by Vav2 overexpression were particularly reversed by Rac1 inhibitor. A heterozygous, rare Vav2 variant was identified in PDA patients. Compared with the wild type, this variant attenuated Vav2 protein expression and weakened the activation of downstream Rac1, further impairing its functions in SMCs. In conclusion, Vav2 functions as an activator for Rac1 in SMCs to promote SMCs migration, dedifferentiation, and ECMs production. Deleterious variant potentially induces Vav2 loss of function, further providing possible molecular mechanisms about Vav2 in PDA pathogenesis. These findings enriched the current genetic etiology of PDA, which may provide a novel target for prenatal diagnosis and treatment. KEY MESSAGES: Although we have proposed the potential association between Vav2 and PDA incidence through whole exome sequencing, the molecular mechanisms underlying Vav2 in PDA have never been reported. This work, for the first time, demonstrated that Vav2 was exclusively expressed in closed DAs. Moreover, we found that Vav2 participated in the process of anatomic closure by mediating SMCs migration, dedifferentiation, and ECMs deposition through Rac1 activation. Our findings first identified a deleterious Vav2 c.701C>T variant that affected its function in SMCs by impairing Rac1 activation, which may lead to PDA defect. Vav2 may become an early diagnosis and an effective intervention target for PDA clinical therapy.


Assuntos
Permeabilidade do Canal Arterial , Canal Arterial , Feminino , Humanos , Gravidez , Aorta/metabolismo , Movimento Celular , Canal Arterial/metabolismo , Canal Arterial/patologia , Permeabilidade do Canal Arterial/genética , Permeabilidade do Canal Arterial/metabolismo , Permeabilidade do Canal Arterial/patologia , Miócitos de Músculo Liso/metabolismo
9.
Metabolites ; 13(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37887405

RESUMO

For dairy cattle to perform well throughout and following lactations, precise dietary control during the periparturient phase is crucial. The primary issues experienced by periparturient dairy cows include issues like decreased dry matter intake (DMI), a negative energy balance, higher levels of non-esterified fatty acids (NEFA), and the ensuing inferior milk output. Dairy cattle have always been fed a diet high in crude protein (CP) to produce the most milk possible. Despite the vital function that dairy cows play in the conversion of dietary CP into milk, a sizeable percentage of nitrogen is inevitably expelled, which raises serious environmental concerns. To reduce nitrogen emissions and their production, lactating dairy cows must receive less CP supplementation. Supplementing dairy cattle with rumen-protected methionine (RPM) and choline (RPC) has proven to be a successful method for improving their ability to use nitrogen, regulate their metabolism, and produce milk. The detrimental effects of low dietary protein consumption on the milk yield, protein yield, and dry matter intake may be mitigated by these nutritional treatments. In metabolic activities like the synthesis of sulfur-containing amino acids and methylation reactions, RPM and RPC are crucial players. Methionine, a limiting amino acid, affects the production of milk protein and the success of lactation in general. According to the existing data in the literature, methionine supplementation has a favorable impact on the pathways that produce milk. Similarly, choline is essential for DNA methylation, cell membrane stability, and lipid metabolism. Furthermore, RPC supplementation during the transition phase improves dry matter intake, postpartum milk yield, and fat-corrected milk (FCM) production. This review provides comprehensive insights into the roles of RPM and RPC in optimizing nitrogen utilization, metabolism, and enhancing milk production performance in periparturient dairy cattle, offering valuable strategies for sustainable dairy farming practices.

10.
BMC Genom Data ; 24(1): 41, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550632

RESUMO

BACKGROUND: At present, donkey meat in the market shows an imbalance between supply and demand, and there is an urgent need to cultivate a meat-type Dezhou donkey breed. On the one hand, it can improve the imbalance in the market, and on the other hand, it can promote the rapid development of the donkey industry. This study aimed to reveal significant genetic variation in the NK1 homeobox 2 gene (NKX1-2) of Dezhou donkeys and investigate the association between genotype and body size in Dezhou donkeys. RESULTS: In this study, a SNP (g.54704925 A > G) was identified at the exon4 by high-depth resequencing of the Dezhou donkey NKX1-2 gene. The AA genotype is the dominant genotype. The g.54704925 A > G site was significantly associated with body length, thoracic girth, and hide weight (P < 0.05), while it was highly significantly associated with body height and carcass weight (P < 0.01) in Dezhou donkeys. CONCLUSION: Overall, the results of this study showed that the NKX1-2 gene could be a candidate gene for breeding meat-type Dezhou donkeys, and the g.54704925 A > G locus could be used as a marker locus for selection and breeding.


Assuntos
Equidae , Animais , Tamanho Corporal/genética , Equidae/genética , Genótipo , Fenótipo , Análise de Sequência de DNA , Polimorfismo de Nucleotídeo Único
11.
Foods ; 12(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37297473

RESUMO

The lipid molecules and volatile organic compounds (VOCs) in milk are heavily influenced by diet. However, little is known about how roughage affects the lipid and VOC contents of donkey milk. Accordingly, in the present study, donkeys were fed corn straw (G1 group), wheat hulls (G2 group), or wheat straw (G3 group), and the lipid and VOC profiles of their milk were determined using LC-MS and GC-MS. Of the 1842 lipids identified in donkey milk, 153 were found to be differential, including glycerolipids, glycerophospholipids, and sphingolipids. The G1 group showed a greater variety and content of triacyclglycerol species than the G2 and G3 groups. Of 45 VOCs, 31 were identified as differential, including nitrogen compounds, esters, and alcohols. These VOCs were significantly increased in the G2 and G3 groups, with the greatest difference being between the G1 and G2 groups. Thus, our study demonstrates that dietary roughage changes the lipid and VOC profiles of donkey milk.

12.
Signal Transduct Target Ther ; 8(1): 224, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37264021

RESUMO

Increased rates of ribosome biogenesis have been recognized as hallmarks of many cancers and are associated with poor prognosis. Using a CRISPR synergistic activation mediator (SAM) system library targeting 89 ribosomal proteins (RPs) to screen for the most oncogenic functional RPs in human esophageal squamous cell carcinoma (ESCC), we found that high expression of RPS15 correlates with malignant phenotype and poor prognosis of ESCC. Gain and loss of function models revealed that RPS15 promotes ESCC cell metastasis and proliferation, both in vitro and in vivo. Mechanistic investigations demonstrated that RPS15 interacts with the K homology domain of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), which recognizes and directly binds the 3'-UTR of MKK6 and MAPK14 mRNA in an m6A-dependent manner, and promotes translation of core p38 MAPK pathway proteins. By combining targeted drug virtual screening and functional assays, we found that folic acid showed a therapeutic effect on ESCC by targeting RPS15, which was augmented by the combination with cisplatin. Inhibition of RPS15 by folic acid, IGF2BP1 ablation, or SB203580 treatment were able to suppress ESCC metastasis and proliferation via the p38 MAPK signaling pathway. Thus, RPS15 promotes ESCC progression via the p38 MAPK pathway and RPS15 inhibitors may serve as potential anti-ESCC drugs.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
13.
J Matern Fetal Neonatal Med ; 36(2): 2224489, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37365012

RESUMO

OBJECTIVE: We aim to explore the mediating effect of hypertensive disorders of pregnancy (HDP) on the relationship between pre-pregnancy body mass index (BMI) and the risk of preterm birth (PTB) in women with singleton live births. METHODS: Demographic and clinical data of 3,249,159 women with singleton live births were extracted from the National Vital Statistics System (NVSS) database in this retrospective cohort study. The associations between pre-pregnancy BMI and HDP, HDP, and PTB, and pre-pregnancy BMI and PTB were evaluated using univariate and multivariate logistic regression analyses, with odds ratios (ORs) and 95% confidence intervals (CIs). Structural equation modeling (SEM) was used to explore the mediating effect of HDP on the relationship between pre-pregnancy BMI and PTB. RESULTS: In total, 324,627 women (9.99%) had PTB. After adjustment for covariables, there were significant associations between pre-pregnancy BMI and HDP [OR = 2.07, 95% CI: 2.05-2.09)], HDP and PTB [OR = 2.54, 95% CI: (2.52-2.57)], and pre-pregnancy BMI and PTB [OR = 1.03, 95% CI: 1.02-1.03)]. The effect of pre-pregnancy BMI on PTB was significantly mediated by HDP with a mediation proportion of 63.62%, especially in women of different ages and having gestational diabetes mellitus (GDM) or not. CONCLUSION: HDP may play a mediating role in the effect of pre-pregnancy BMI on PTB risk. Women preparing for pregnancy should pay close attention to BMI, and pregnant women should monitor and develop interventions for HDP to reduce the risk of PTB.


Assuntos
Hipertensão Induzida pela Gravidez , Nascimento Prematuro , Gravidez , Feminino , Recém-Nascido , Humanos , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/etiologia , Hipertensão Induzida pela Gravidez/epidemiologia , Índice de Massa Corporal , Estudos Retrospectivos , Fatores de Risco , Nascido Vivo
14.
Am J Cancer Res ; 13(4): 1329-1346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168338

RESUMO

Leydig cell tumor is the most frequent non-germ cell tumors of testis. The biggest challenge of using radiotherapy to treat testicular cancer is in effectively killing cancer cells and maintaining reproductive function after treatment. Our recently published article showed that cordycepin could enhance radiosensitivity to induce mouse Leydig tumor cell apoptosis by inducing cell cycle arrest, caspase pathway and endoplasmic reticulum (ER) stress. In the present study, the potency and mechanism of a previous combination treatment protocol on reactive oxygen species (ROS) induction and DNA damage were further investigated. Our results reveal that 25 µM cordycepin plus 4 Gy radiation leads to ROS accumulation accompanied by a decrease in heme oxygenase (HO)-1 protein expression in MA-10 mouse Leydig tumor cells. Subsequently, pronounced DNA damage with phosphorylated H2A histone family member X (γ-H2AX) increase and activation of DNA damage-related signaling pathways including double and single stranded break-induced ataxia telangiectasia mutated (ATM)/checkpoint kinase (Chk)2 and ataxia telangiectasia mutated and Rad3 related (ATR)/Chk1 signaling axes were identified. p53-dependent pathway was then initiated ultimately leading to cell death. Preincubated with free radical scavenger, N-acetylcysteine (NAC), down-regulated γ-H2AX expression in treated cells and partially reduced cell death, indicating that ROS overproduction is involved in combination treatment-induced DNA damage. Furthermore, the combination treatment effectively inhibited tumor growth as reflected in the reduction of tumor volume, size and weight, and high expression level of γ-H2AX in tumor tissue in vivo, suggesting that the combination treatment inhibited tumor growth via causing DNA damage in MA-10 cells. In summary, these results expound that the combination treatment of cordycepin and radiation induces MA-10 mouse Leydig tumor cell death through ROS accumulation and DNA damage. This finding can serve as a reference guideline for future clinical therapy of testicular cancer and provide potential targets for anti-cancer drug design.

15.
J Esthet Restor Dent ; 35(2): 303-308, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36573304

RESUMO

OBJECTIVE: This study aimed to explore the influence of smile esthetics on the quality of life in a Han Chinese population. METHODS: A total of 110 Han Chinese volunteers (52 males and 58 females, mean age 26.7 years) were recruited, and frontal images of their smiles were collected. A photoediting program was used to evaluate the following components of smile esthetics: the buccal corridor ratios, the angle between the interpupillary and commissural lines, the number of visible teeth, and width-to-length ratios of the maxillary central incisors. Oral health-related quality of life (OHRQoL) in these volunteers was evaluated using the Psychosocial Impact of Dental Aesthetics Questionnaire (PIDAQ) and Oral Health Impact Profile-14 (OHIP-14). Statistical analyses were performed by using Pearson's correlations and multiple linear regression (α = 0.05). RESULTS: Compared to males, females scored higher on psychological impact (p = 0.017). Moreover, the number of visible teeth had a significant effect on social impact, psychological impact and esthetic concern (all p < 0.05). However, the buccal corridor ratios, the angle between the interpupillary and commissural lines, and the width-to-length ratios of the maxillary central incisor did not correlate with the OHRQoL (all p > 0.05). CONCLUSIONS: The number of visible teeth significantly influenced the quality of life in a Han Chinese population. Smile esthetics had a significantly greater psychological impact on females than males. CLINICAL SIGNIFICANCE: This study highlights the effects of smile esthetics on the quality of life in a Han Chinese population. Female patients may raise more esthetic concerns in clinical practice.


Assuntos
Estética Dentária , Qualidade de Vida , Sorriso , Adulto , Feminino , Humanos , Masculino , População do Leste Asiático , Incisivo/anatomia & histologia
16.
Neurochem Res ; 48(3): 929-941, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36394706

RESUMO

Pharmaco-resistance is a challenging problem for treatment of status epilepticus (SE) in the clinic. P-glycoprotein (P-gp) is one of the most important multi-drug transporters that contribute to drug resistance of SE. Long noncoding RNAs (lncRNAs) have been increasingly recognized as versatile regulators of P-gp in tumors and epilepsy. However, the function of lncRNAs in drug resistance of SE remains largely unknown. In the present study, pilocarpine-induced rat model is used to explore the expression profiles of lncRNAs in the hippocampus of SE using RNA sequencing. Our results implied that the level of lncRNA H19 was significantly increased in the hippocampus of SE rats, which was positively correlated with the level of P-gp. While downregulation of H19 could inhibit the expression of P-gp and alleviate neural damage in the hippocampus of SE rats. Furthermore, it was revealed that H19 regulates P-gp expression through the nuclear factor-kappaB (NF-κB) signaling pathway by functioning as a competing endogenous RNA against microRNA-29a-3p. Overall, our study indicated that H19 regulates P-gp expression and neural damage induced by SE through the NF-κB signaling pathway, which provides a promising target to overcome drug resistance and alleviate brain damage for SE.


Assuntos
MicroRNAs , RNA Longo não Codificante , Estado Epiléptico , Ratos , Animais , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Transdução de Sinais/fisiologia , MicroRNAs/metabolismo
17.
Front Immunol ; 14: 1290044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259482

RESUMO

Mastitis, the inflammatory condition of mammary glands, has been closely associated with immune suppression and imbalances between antioxidants and free radicals in cattle. During the periparturient period, dairy cows experience negative energy balance (NEB) due to metabolic stress, leading to elevated oxidative stress and compromised immunity. The resulting abnormal regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with increased non-esterified fatty acids (NEFA) and ß-hydroxybutyric acid (BHBA) are the key factors associated with suppressed immunity thereby increases susceptibility of dairy cattle to infections, including mastitis. Metabolic diseases such as ketosis and hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by compromised immune function and exposure to physical injuries. Oxidative stress, arising from disrupted balance between ROS generation and antioxidant availability during pregnancy and calving, further contributes to mastitis susceptibility. Metabolic stress, marked by excessive lipid mobilization, exacerbates immune depression and oxidative stress. These factors collectively compromise animal health, productive efficiency, and udder health during periparturient phases. Numerous studies have investigated nutrition-based strategies to counter these challenges. Specifically, amino acids, trace minerals, and vitamins have emerged as crucial contributors to udder health. This review comprehensively examines their roles in promoting udder health during the periparturient phase. Trace minerals like copper, selenium, and calcium, as well as vitamins; have demonstrated significant impacts on immune regulation and antioxidant defense. Vitamin B12 and vitamin E have shown promise in improving metabolic function and reducing oxidative stress followed by enhanced immunity. Additionally, amino acids play a pivotal role in maintaining cellular oxidative balance through their involvement in vital biosynthesis pathways. In conclusion, addressing periparturient mastitis requires a holistic understanding of the interplay between metabolic stress, immune regulation, and oxidative balance. The supplementation of essential amino acids, trace minerals, and vitamins emerges as a promising avenue to enhance udder health and overall productivity during this critical phase. This comprehensive review underscores the potential of nutritional interventions in mitigating periparturient bovine mastitis and lays the foundation for future research in this domain.


Assuntos
Mastite , Oligoelementos , Feminino , Gravidez , Bovinos , Animais , Humanos , Vitaminas , Antioxidantes , Aminoácidos , Espécies Reativas de Oxigênio , Rúmen , Vitamina A , Vitamina K , Anti-Inflamatórios
18.
Genes (Basel) ; 13(11)2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36421849

RESUMO

An increase in the number of vertebrae can significantly affect the meat production performance of livestock, thus increasing carcass weight, which is of great importance for livestock production. The homeobox gene C8 (HOXC8) has been identified as an essential candidate gene for regulating vertebral development. However, it has not been researched on the Dezhou donkey. This study aimed to verify the Dezhou donkey HOXC8 gene's polymorphisms and assess their effects on multiple vertebral numbers and carcass weight. In this study, the entire HOXC8 gene of the Dezhou donkey was sequenced, SNPs at the whole gene level were identified, and typing was accomplished utilizing a targeted sequencing genotype detection technique (GBTS). Then, a general linear model was used to perform an association study of HOXC8 gene polymorphism loci, multiple vertebral numbers, and carcass weight for screening candidate markers that can be used for molecular breeding of Dezhou donkeys. These findings revealed that HOXC8 included 12 SNPs, all unique mutant loci. The HOXC8 g.15179224C>T was significantly negatively associated with carcass weight (CW) and lumbar vertebrae length (LL) (p < 0.05). The g.15179674G>A locus was shown to be significantly positively associated with the number of lumbar vertebrae (LN) (p < 0.05). The phylogenetic tree constructed for the Dezhou donkey HOXC8 gene and seven other species revealed that the HOXC8 gene was highly conserved during animal evolution but differed markedly among distantly related animals. The results suggest that HOXC8 is a vital gene affecting multiple vertebral numbers and carcass weight in Dezhou donkeys, and the two loci g.15179224C>T and g.15179674G>A may be potential genetic markers for screening and breeding of new strains of high-quality and high-yielding Dezhou donkeys.


Assuntos
Equidae , Genes Homeobox , Animais , Equidae/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Vértebras Lombares
19.
Am J Dent ; 35(4): 178-184, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35986932

RESUMO

PURPOSE: To do a systematic review and meta-analysis to determine whether laser treatment affects the bond strength of resin composites to recently bleached enamel. METHODS: This report follows the Preferred Reporting Items for Systematic Reviews and Qualitative Analyses (PRISMA) statement. Medline via PubMed, Embase, Web of Science, and the Cochrane Library databases were searched with no limits on publication year. Two reviewers independently screened all titles and abstracts to perform the study selection, data extraction, and risk-of-bias assessments. A random-effects meta-analysis model was performed using Review Manager software (version 5.3, Cochrane Collaboration). RESULTS: From the 93 records identified, seven articles that met all the inclusion criteria were included in the systematic review, and six studies were included in the meta-analysis. The overall results showed a statistically significant difference in bond strength between the control group and laser-treated group (P= 0.04; mean difference: 5.27; 95% confidence interval: 0.28 to 10.27), favoring the laser-treated group. Subgroup analyses revealed that the tooth source (bovine or human teeth) contributed to the effect of laser treatment on the bleached enamel. CLINICAL SIGNIFICANCE: Laser treatment may increase the bond strength of resin composites to recently bleached enamel. Pretreatment with a laser, preferably with Nd:YAG (1 W, frequency of 10 Hz, irradiation time of 60 seconds) or CO2 lasers (0.5 W, frequency of 10 Hz, irradiation time of 60 seconds), may be recommended to restore the bond strength of recently bleached enamel.


Assuntos
Colagem Dentária , Lasers de Estado Sólido , Animais , Bovinos , Resinas Compostas/química , Colagem Dentária/métodos , Esmalte Dentário , Humanos , Lasers de Estado Sólido/uso terapêutico
20.
Front Genet ; 13: 921925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734438

RESUMO

Background: Patent ductus arteriosus (PDA) is one of the most common congenital heart defects causing pulmonary hypertension, infective endocarditis, and even death. The important role of genetics in determining spontaneous ductal closure has been well-established. However, as many of the identified variants are rare, thorough identification of the associated genetic factors is necessary to further explore the genetic etiology of PDA. Methods: We performed whole-exome sequencing (WES) on 39 isolated nonsyndromic PDA patients and 100 healthy controls. Rare variants and novel genes were identified through bioinformatic filtering strategies. The expression patterns of candidate genes were explored in human embryo heart samples. Results: Eighteen rare damaging variants of six novel PDA-associated genes (SOX8, NES, CDH2, ANK3, EIF4G1, and HIPK1) were newly identified, which were highly expressed in human embryo hearts. Conclusions: WES is an efficient diagnostic tool for exploring the genetic pathogenesis of PDA. These findings contribute new insights into the molecular basis of PDA and may inform further studies on genetic risk factors for congenital heart defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...