Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 63(1): 205-215, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31769665

RESUMO

Antiviral drug resistance in influenza infections has been a major threat to public health. To develop a broad-spectrum inhibitor of influenza to combat the problem of drug resistance, we previously identified the highly conserved E339...R416 salt bridge of the nucleoprotein trimer as a target and compound 1 as an inhibitor disrupting the salt bridge with an EC50 = 2.7 µM against influenza A (A/WSN/1933). We have further modified this compound via a structure-based approach and performed antiviral activity screening to identify compounds 29 and 30 with EC50 values of 110 and 120 nM, respectively, and without measurable host cell cytotoxicity. Compared to the clinically used neuraminidase inhibitors, these two compounds showed better activity profiles against drug-resistant influenza A strains, as well as influenza B, and improved survival of influenza-infected mice.


Assuntos
Compostos de Anilina/farmacologia , Antivirais/farmacologia , Vírus da Influenza A/química , Multimerização Proteica/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Tiazóis/farmacologia , Proteínas do Core Viral/metabolismo , Compostos de Anilina/síntese química , Compostos de Anilina/metabolismo , Animais , Antivirais/síntese química , Antivirais/metabolismo , Sítios de Ligação/efeitos dos fármacos , Feminino , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas do Nucleocapsídeo , Ligação Proteica , Eletricidade Estática , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/metabolismo
2.
PLoS One ; 12(9): e0184255, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28898293

RESUMO

The genome sequence of V. cholerae O1 Biovar Eltor strain N16961 has revealed a putative antibiotic resistance (var) regulon that is predicted to encode a transcriptional activator (VarR), which is divergently transcribed relative to the putative resistance genes for both a metallo-ß-lactamase (VarG) and an antibiotic efflux-pump (VarABCDEF). We sought to test whether these genes could confer antibiotic resistance and are organised as a regulon under the control of VarR. VarG was overexpressed and purified and shown to have ß-lactamase activity against penicillins, cephalosporins and carbapenems, having the highest activity against meropenem. The expression of VarABCDEF in the Escherichia coli (ΔacrAB) strain KAM3 conferred resistance to a range of drugs, but most significant resistance was to the macrolide spiramycin. A gel-shift analysis was used to determine if VarR bound to the promoter regions of the resistance genes. Consistent with the regulation of these resistance genes, VarR binds to three distinct intergenic regions, varRG, varGA and varBC located upstream and adjacent to varG, varA and varC, respectively. VarR can act as a repressor at the varRG promoter region; whilst this repression was relieved upon addition of ß-lactams, these did not dissociate the VarR/varRG-DNA complex, indicating that the de-repression of varR by ß-lactams is indirect. Considering that the genomic arrangement of VarR-VarG is strikingly similar to that of AmpR-AmpC system, it is possible that V. cholerae has evolved a system for resistance to the newer ß-lactams that would prove more beneficial to the bacterium in light of current selective pressures.


Assuntos
Antibacterianos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Regulon , Fatores de Transcrição/metabolismo , Vibrio cholerae/genética , beta-Lactamases/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacologia , Sequência de Bases , DNA Intergênico , Farmacorresistência Bacteriana , Genes Bacterianos , Hidrólise , Cinética , Testes de Sensibilidade Microbiana , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo
3.
Biochemistry ; 56(38): 5112-5124, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28858528

RESUMO

The vast majority of in vitro structural and functional studies of the activation mechanism of protein kinases use the kinase domain alone. Well-demonstrated effects of regulatory domains or allosteric factors are scarce for serine/threonine kinases. Here we use a site-specifically phosphorylated SCD1-FHA1-kinase three-domain construct of the serine/threonine kinase Rad53 to show the effect of phospho-priming, an in vivo regulatory mechanism, on the autophosphorylation intermediate and specificity. Unphosphorylated Rad53 is a flexible monomer in solution but is captured in an asymmetric enzyme:substrate complex in crystal with the two FHA domains separated from each other. Phospho-priming induces formation of a stable dimer via intermolecular pT-FHA binding in solution. Importantly, autophosphorylation of unprimed and phospho-primed Rad53 produced predominantly inactive pS350-Rad53 and active pT354-Rad53, respectively. The latter mechanism was also demonstrated in vivo. Our results show that, while Rad53 can display active conformations under various conditions, simulation of in vivo regulatory conditions confers functionally relevant autophosphorylation.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/química , Quinase do Ponto de Checagem 2/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Dano ao DNA , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Fosfotreonina/metabolismo , Domínios Proteicos , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Espalhamento a Baixo Ângulo , Serina/química , Treonina/química , Treonina/metabolismo
4.
Biochemistry ; 54(40): 6219-29, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26389808

RESUMO

Forkhead-associated (FHA) domain is the only signaling domain that recognizes phosphothreonine (pThr) specifically. TRAF-interacting protein with an FHA domain (TIFA) was shown to be involved in immune responses by binding with TRAF2 and TRAF6. We recently reported that TIFA is a dimer in solution and that, upon stimulation by TNF-α, TIFA is phosphorylated at Thr9, which triggers TIFA oligomerization via pThr9-FHA domain binding and activates nuclear factor κB (NF-κB). However, the structural mechanism for the functionally important TIFA oligomerization remains to be established. While FHA domain-pThr binding is known to mediate protein dimerization, its role in oligomerization has not been demonstrated at the structural level. Here we report the crystal structures of TIFA (residues 1-150, with the unstructured C-terminal tail truncated) and its complex with the N-terminal pThr9 peptide (residues 1-15), which show unique features in the FHA structure (intrinsic dimer and extra ß-strand) and in its interaction with the pThr peptide (with residues preceding rather than following pThr). These structural features support previous and additional functional analyses. Furthermore, the structure of the complex suggests that the pThr9-FHA domain interaction can occur only between different sets of dimers rather than between the two protomers within a dimer, providing the structural mechanism for TIFA oligomerization. Our results uncover the mechanism of FHA domain-mediated oligomerization in a key step of immune responses and expand the paradigm of FHA domain structure and function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos/metabolismo , Fosfotreonina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Fosfotreonina/química , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína
6.
Mol Cell Biol ; 32(14): 2664-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22566686

RESUMO

The forkhead-associated (FHA) domain recognizes phosphothreonine (pT) with high specificity and functional diversity. TIFA (TRAF-interacting protein with an FHA domain) is the smallest FHA-containing human protein. Its overexpression was previously suggested to provoke NF-κB activation, yet its exact roles in this signaling pathway and the underlying molecular mechanism remain unclear. Here we identify a novel threonine phosphorylation site on TIFA and show that this phosphorylated threonine (pT) binds with the FHA domain of TIFA, leading to TIFA oligomerization and TIFA-mediated NF-κB activation. Detailed analysis indicated that unphosphorylated TIFA exists as an intrinsic dimer and that the FHA-pT9 binding occurs between different dimers of TIFA. In addition, silencing of endogenous TIFA resulted in attenuation of tumor necrosis factor alpha (TNF-α)-mediated downstream signaling. We therefore propose that the TIFA FHA-pT9 binding provides a previously unidentified link between TNF-α stimulation and NF-κB activation. The intermolecular FHA-pT9 binding between dimers also represents a new mechanism for the FHA domain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Anticorpos Monoclonais , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfotreonina/química , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 108(40): 16515-20, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21930946

RESUMO

The nucleoprotein (NP) of the influenza virus exists as trimers, and its tail-loop binding pocket has been suggested as a potential target for antiinfluenza therapeutics. The possibility of NP as a drug target was validated by the recent reports that nucleozin and its analogs can inhibit viral replication by inducing aggregation of NP trimers. However, these inhibitors were identified by random screening, and the binding site and inhibition mechanism are unclear. We report a rational approach to target influenza virus with a new mechanism--disruption of NP-NP interaction. Consistent with recent work, E339A, R416A, and deletion mutant Δ402-428 were unable to support viral replication in the absence of WT NP. However, only E339A and R416A could form hetero complex with WT NP, but the complex was unable to bind the RNA polymerase, leading to inhibition of viral replication. These results demonstrate the importance of the E339…R416 salt bridge in viral survival and establish the salt bridge as a sensitive antiinfluenza target. To provide further support, we showed that peptides encompassing R416 can disrupt NP-NP interaction and inhibit viral replication. Finally we performed virtual screening to target E339…R416, and some small molecules identified were shown to disrupt the formation of NP trimers and inhibit replication of WT and nucleozin-resistant strains. This work provides a new approach to design antiinfluenza drugs.


Assuntos
Modelos Moleculares , Complexos Multiproteicos/metabolismo , Nucleoproteínas/metabolismo , Orthomyxoviridae/genética , Conformação Proteica , Replicação Viral/genética , Animais , Western Blotting , Linhagem Celular , Dicroísmo Circular , Primers do DNA/genética , Cães , Sistemas de Liberação de Medicamentos/métodos , Técnica Indireta de Fluorescência para Anticorpo , Ligação de Hidrogênio , Luciferases , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto/genética , Nucleoproteínas/genética , Multimerização Proteica , Eletricidade Estática , Ultracentrifugação
8.
Nat Chem Biol ; 7(5): 304-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21478878

RESUMO

In the search for new efficacious antibiotics, biosynthetic engineering offers attractive opportunities to introduce minor alterations to antibiotic structures that may overcome resistance. Dbv29, a flavin-containing oxidase, catalyzes the four-electron oxidation of a vancomycin-like glycopeptide to yield A40926. Structural and biochemical examination of Dbv29 now provides insights into residues that govern flavinylation and activity, protein conformation and reaction mechanism. In particular, the serendipitous discovery of a reaction intermediate in the crystal structure led us to identify an unexpected opportunity to intercept the normal enzyme mechanism at two different points to create new teicoplanin analogs. Using this method, we synthesized families of antibiotic analogs with amidated and aminated lipid chains, some of which showed marked potency and efficacy against multidrug resistant pathogens. This method offers a new strategy for the development of chemical diversity to combat antibacterial resistance.


Assuntos
Anti-Infecciosos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Teicoplanina/farmacologia , Anti-Infecciosos/química , Resistência Microbiana a Medicamentos , Enterococcus faecalis/classificação , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Oxirredução , Conformação Proteica , Teicoplanina/análogos & derivados , Teicoplanina/química , Vancomicina/química , Vancomicina/farmacologia
9.
Proc Natl Acad Sci U S A ; 107(45): 19151-6, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20974907

RESUMO

As influenza viruses have developed resistance towards current drugs, new inhibitors that prevent viral replication through different inhibitory mechanisms are useful. In this study, we developed a screening procedure to search for new antiinfluenza inhibitors from 1,200,000 compounds and identified previously reported as well as new antiinfluenza compounds. Several antiinfluenza compounds were inhibitory to the influenza RNA-dependent RNA polymerase (RdRP), including nucleozin and its analogs. The most potent nucleozin analog, 3061 (FA-2), inhibited the replication of the influenza A/WSN/33 (H1N1) virus in MDCK cells at submicromolar concentrations and protected the lethal H1N1 infection of mice. Influenza variants resistant to 3061 (FA-2) were isolated and shown to have the mutation on nucleoprotein (NP) that is distinct from the recently reported resistant mutation of Y289H [Kao R, et al. (2010) Nat Biotechnol 28:600]. Recombinant influenza carrying the Y52H NP is also resistant to 3061 (FA-2), and NP aggregation induced by 3061 (FA-2) was identified as the most likely cause for inhibition. In addition, we identified another antiinfluenza RdRP inhibitor 367 which targets PB1 protein but not NP. A mutant resistant to 367 has H456P mutation at the PB1 protein and both the recombinant influenza and the RdRP expressing the PB1 H456P mutation have elevated resistance to 367. Our high-throughput screening (HTS) campaign thus resulted in the identification of antiinfluenza compounds targeting RdRP activity.


Assuntos
Antivirais/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Animais , Linhagem Celular , Cães , Farmacorresistência Viral/genética , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos , Nucleoproteínas/genética , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
10.
Mol Vis ; 15: 2358-63, 2009 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19936305

RESUMO

PURPOSE: delta-Crystallin is a soluble structural protein in found in avian eye lenses; it shares high amino acid sequence identity with argininosuccinate lyase. E294 is the only residue located at the double dimer interface and it performs hydrogen bonding with the active site residues of H160 and K323 in the neighboring and diagonal subunits, respectively. H160 is reported to play an important role in catalysis due to its H-bond interaction with the fumarate moiety of the substrate. In order to clarify the function of E294 in either stabilization of the quaternary structure or in catalysis, we carried out site-directed mutagenesis and functional analysis. METHODS: The structure of both wild-type and mutant proteins were analyzed by circular dichroism (CD) spectroscopy, fluorescence spectra, and analytical ultracentrifugation. Structural stability was measured by CD and tryptophan fluorescence. A modeled structure of the E294L mutant was built and optimized with energy minimization. RESULTS: No gross structural changes were observed when E294 was substituted with leucine, as judged by circular dichroism, tryptophan fluorescence, ANS fluorescence, and sedimentation velocity analyses. However, this mutant enzyme had only about 10% of the activity of a wild-type enzyme and its secondary structure was more easily denatured by increased temperature than that of a wild-type enzyme. The mutant protein also underwent its first unfolding transition at a lower concentration of guanidinium-hydrochloride than the wild-type protein. CONCLUSIONS: These results indicate that the interactions offered by E294 in the dimer-dimer interface of delta-crystallin are required to maintain the hydrogen bonding network in the active site for catalysis. Disruption of the interaction had no significant effect on the conformation and quaternary structure of delta-crystallin but it did lead to instability in the double dimer structure.


Assuntos
Gansos/metabolismo , Ácido Glutâmico/metabolismo , Subunidades Proteicas/metabolismo , delta-Cristalinas/química , delta-Cristalinas/metabolismo , Sequência de Aminoácidos , Animais , Guanidina/farmacologia , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Termodinâmica
11.
FEBS J ; 276(18): 5126-36, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19674108

RESUMO

Delta-crystallin is the major structural protein in avian and reptilian eye lenses, and confers special refractive properties. The protein is a homotetramer arranged as a dimer of dimers. In the present study, the roles of the side chains of Glu267, Lys315, and Glu327, which provide hydrogen bonds at the double dimer interface, were investigated. Hydrophobic side chain substitution led to all mutant proteins having an unstable dimer interface. The E267L/E327L mutant had the greatest sensitivity to temperature, urea and guanidinium hydrochloride denaturation, and the most extensive exposure of hydrophobic patches, as judged by 1-anilinonaphthalene-8-sulfonic acid fluorescence, CD, and tryptophan fluorescence. In contrast, the E267L/K315L/E327L mutant showed higher stability than the E267L/E327L mutant. Some level of the dissociated dimeric form was observed in the K315L mutant, but it was not observed for the K315A and E267L/K315L mutants. The E327L mutant was partially in the dissociated dimeric form, whereas the E267/E327L mutant was predominantly dissociated into dimers. In contrast, the triple mutant of E267L/K315L/E327L retained a tetrameric structure. In the presence of urea, a stable monomeric intermediate with higher stability than the wild type was identified for the K315A mutant. Disruption of interfacial interactions at Glu267 led to polymerization of partly unfolded intermediates in the presence of 3 m urea. However, these polymeric forms were not observed with combinations of the E267L mutation with other mutations. These results indicate that these hydrogen bonds, which are present at different contact surfaces in the dimer-dimer interface, perform distinct functions in double dimer assembly. The coordination of these interactions is critical for the stability and tetramer formation of delta-crystallin.


Assuntos
delta-Cristalinas/química , Estabilidade Enzimática , Ligação de Hidrogênio , Estrutura Molecular , Conformação Proteica , Estrutura Quaternária de Proteína , delta-Cristalinas/isolamento & purificação
12.
Biophys J ; 93(11): 3977-88, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17704184

RESUMO

Malic enzyme is a tetrameric protein with double dimer quaternary structure. In 3-5 M urea, the pigeon cytosolic NADP(+)-dependent malic enzyme unfolded and aggregated into various forms with dimers as the basic unit. Under the same denaturing conditions but in the presence of 4 mM Mn(2+), the enzyme existed exclusively as a molten globule dimer in solution. Similar to pigeon enzyme (Chang, G. G., T. M. Huang, and T. C. Chang. 1988. Biochem. J. 254:123-130), the human mitochondrial NAD(+)-dependent malic enzyme also underwent a reversible tetramer-dimer-monomer quaternary structural change in an acidic pH environment, which resulted in a molten globule state that is also prone to aggregate. The aggregation of pigeon enzyme was attributable to Trp-572 side chain. Mutation of Trp-572 to Phe, His, Ile, Ser, or Ala abolished the protective effect of the metal ions. The cytosolic malic enzyme was completely digested within 2 h by trypsin. In the presence of Mn(2+), a specific cutting site in the Lys-352-Gly-Arg-354 region was able to generate a unique polypeptide with M(r) of 37 kDa, and this polypeptide was resistant to further digestion. These results indicate that, during the catalytic process of malic enzyme, binding metal ion induces a conformational change within the enzyme from the open form to an intermediate form, which upon binding of L-malate, transforms further into a catalytically competent closed form.


Assuntos
Malato Desidrogenase/química , Malato Desidrogenase/ultraestrutura , Metais/química , Estabilidade Enzimática , Transição de Fase , Conformação Proteica , Dobramento de Proteína
13.
Biochem Biophys Res Commun ; 357(1): 133-8, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17418816

RESUMO

Spot 14 (S14) is a small acidic protein with no sequence similarity to other mammalian gene products. Its biochemical function is elusive. Recent studies have shown that, in some cancers, human S14 (hS14) localizes to the nucleus and is amplified, suggesting that it plays a role in the regulation of lipogenic enzymes during tumorigenesis. In this study, we purified untagged hS14 protein and then demonstrated, using various biochemical methods, including analytic ultracentrifugation, that hS14 might form a homodimer. We also found several lines of evidence to suggest physical and functional interactions between hS14 and the thyroid hormone receptor (TR). The ubiquitous expression of hS14 in various cell lines and its cell-type-dependent functions demonstrated in this study suggest that it acts as a positive or negative cofactor of the TR to regulate malic enzyme gene expression. These findings provide a molecular rationale for the role of hS14 in TR-dependent transcriptional activation of the expression of specific genes.


Assuntos
Malato Desidrogenase/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Receptores dos Hormônios Tireóideos/química , Receptores dos Hormônios Tireóideos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Linhagem Celular , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas
14.
Exp Eye Res ; 83(3): 658-66, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16677632

RESUMO

Delta-crystallin is the major structural protein in avian and reptilian eye lenses but its sequence is highly homologous with the urea cycle enzyme, argininosuccinate lyase (ASL). In previous studies the multi-step unfolding process of this protein in the presence of GdmCl was sensitively probed using tryptophan fluorescence. In this study the contribution of single tryptophan residues to the stability of the local environment was monitored by mutation of two highly conservative tryptophan residues in goose delta-crystallin, Trp 74 and Trp 169. These residues behaved differently in terms of fluorescence intensity and maxima emission wavelength, consistent with their structural location in buried or solvent accessible regions. No gross changes in the secondary structure after mutation were observed, as judged by far-UV CD. The side chains of tryptophan residues in the structure of wild-type goose delta-crystallin possess both hydrophobic and hydrogen bonding interactions. Replacement of the side chain with phenylalanine or alanine led to expose of a hydrophobic area and a reduction in thermal stability; W169A particularly has a T(m) value that was 10 degrees C lower than the wild type enzyme. In the presence of GdmCl, a sharp red shift in fluorescence wavelength due to subunit dissociation can be sensitively detected using a single tryptophan, with the region surrounding W74 undergoing the first transition with a [GdmCl](1/2) of 0.45 M. Further measurement of unfolding curves by CD revealed that the W169A mutant was most unstable with a [GdmCl](1/2) of 0.22 M. From sedimentation velocity analysis, the unstable conformation of the W169A mutant affected the assembly of the quaternary structure. Our studies demonstrate the critical role for the tryptophan residues in stabilizing protein conformations and subunit assembly in delta-crystallin.


Assuntos
Gansos/genética , Triptofano/genética , delta-Cristalinas/genética , Animais , Argininossuccinato Liase/genética , Sequência de Bases , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Dobramento de Proteína , Alinhamento de Sequência , Espectrometria de Fluorescência
15.
Biochem J ; 392(Pt 3): 545-54, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16101585

RESUMO

Delta-crystallin is a soluble structural protein in avian eye lenses that confers special refractive properties. In the presence of GdmCl (guanidinium chloride), tetrameric delta-crystallin undergoes dissociation via a dimeric state to a monomeric molten globule intermediate state. The latter are denatured at higher GdmCl concentrations in a multi-state manner. In the present study, the X-ray structure of goose delta-crystallin was determined to 2.8 A (1 A=0.1 nm). In this structure the first 25 N-terminal residues interact with a hydrophobic cavity in a neighbouring molecule, stabilizing the quaternary structure of this protein. When these 25 residues were deleted this did not produce any gross structural changes, as judged by CD analysis, but slightly altered tryptophan fluorescence and ANS (8-anilino-1-naphthalenesulphonic acid) spectra. The dimeric form was significantly identified as judged by sedimentation velocity and nondenaturing gradient gel electrophoresis. This mutant had increased sensitivity to temperature denaturation and GdmCl concentrations of 0.3-1.0 M. This protein was destabilized about 3.3 kcal/mol (1 kcal=4.184 kJ) due to N-terminal truncation. After incubation at 37 degrees C N-terminal truncated proteins were prone to aggregation, suggesting the presence of the unstable dimeric conformation. An important role for the N-terminus in dimer assembly of goose delta-crystallin is proposed.


Assuntos
Gansos , Deleção de Sequência/genética , delta-Cristalinas/química , delta-Cristalinas/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Cristalografia por Raios X , Guanidina/química , Guanidina/farmacologia , Modelos Moleculares , Dobramento de Proteína , Estrutura Quaternária de Proteína/efeitos dos fármacos , Especificidade por Substrato , Temperatura , delta-Cristalinas/metabolismo
16.
Protein Expr Purif ; 36(1): 90-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15177289

RESUMO

Human placental alkaline phosphatase was successfully cloned in the yeast system Pichia pastoris. The recombinant enzyme was over-expressed as a secreted protein in the cultured medium. The enzyme was extremely stable, which resulted in a total recovery of the enzyme activity after the purification process. The purified enzyme preparation was apparently homogeneous as examined by the polyacrylamide gel electrophoresis, analytical gel-permeation chromatography, and analytical ultracentrifugation. The final enzyme preparation showed a purification of 803-fold from the culture medium with a specific activity of 578 U/mg of protein. Fluorescence spectroscopic analyses showed multiple unfolding steps in the urea denaturation process of the homodimeric recombinant enzyme. Extensive conformational change of the enzyme in urea was detected by the analytical ultracentrifugation and the size-exclusive chromatography. The quaternary structure of the enzyme is quite stable. No indication of dissociation was observed after extensive tertiary structural changes.


Assuntos
Isoenzimas/genética , Pichia/genética , Oxirredutases do Álcool/genética , Fosfatase Alcalina , Clonagem Molecular , Estabilidade Enzimática , Proteínas Ligadas por GPI , Vetores Genéticos/genética , Humanos , Isoenzimas/biossíntese , Isoenzimas/isolamento & purificação , Regiões Promotoras Genéticas/genética , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
17.
Bull Math Biol ; 65(4): 553-70, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12875334

RESUMO

Mathematical models for the protein folding-unfolding process involving multiple intermediates have been derived. Computer fitting of the experimental data to this model generates various thermodynamic parameters for the folding-unfolding process. In this way, the complex folding-unfolding process of the multi-domain proteins can be analysed in a quantitative way. The application of the folding-unfolding model involving seven stages in human placental alkaline phosphatase is described.


Assuntos
Fosfatase Alcalina/química , Modelos Químicos , Dobramento de Proteína , Simulação por Computador , Feminino , Humanos , Cinética , Placenta/enzimologia
18.
Biochem J ; 374(Pt 3): 633-7, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12816540

RESUMO

The cytosolic malic enzyme from pigeon liver is very sensitive to the metal-catalysed oxidation systems. Our previous studies using the Cu2+-ascorbate as the oxidation system showed that the enzyme was oxidized and cleaved at several positions, including Asp141. The recently resolved crystal structure of pigeon liver malic enzyme revealed that Asp141 was near to the metal-binding site, but was not a direct metal ligand. However, Asp141 is located next to Phe236, which directly follows the metal ligands Glu234 and Asp235. Mutation at Asp141 caused a drastic effect on the metal-binding affinity of the enzyme. Since Asp141 and Phe236 are highly conserved in most species of malic enzyme, we used a double-mutant cycle to study the possible interactions between these two residues. Four single mutants [D141A (Asp141-->Ala), D141N, F236A and F236L] and four double mutants (D141A/F236A, D141N/F236A, D141A/F236L and D141N/F236L), plus the wild-type enzyme were successfully cloned, expressed and purified to homogeneity. The secondary, tertiary and quaternary structures of these mutants, as assessed by CD, fluorescence and analytical ultracentrifuge techniques, were similar to that of the wild-type enzyme. Initial velocity experiments were performed to derive the various kinetic parameters, which were used to analyse further the free energy change and the coupling energy (DeltaDeltaG(int)) between any two residues. The dissociation constants for Mn2+ ( K (d,Mn)) of the D141A and F236A mutants were increased by approx. 6- and 65-fold respectively, compared with that of the wild-type enzyme. However, the K (d,Mn) for the double mutant D141A/F236A was only increased by 150-fold. A coupling energy of -2.12 kcal/mol was obtained for Asp141 and Phe236. We suggest that Asp141 is involved in the second sphere of the metal-binding network of the enzyme.


Assuntos
Ácido Aspártico/química , Fígado/enzimologia , Malato Desidrogenase/química , Malatos/química , Manganês/química , Fenilalanina/química , Animais , Sítios de Ligação , Columbidae , Cinética , Malato Desidrogenase/genética , Malato Desidrogenase/isolamento & purificação , Metais/química , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...