Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 80(5): e200-e201, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37951308
2.
Exploration (Beijing) ; 3(4): 20220145, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37933234

RESUMO

The past few decades have seen increasingly rapid advances in the field of sustainable energy technologies. As a new bio- and eco-friendly energy source, enzymatic biofuel cells (EBFCs) have garnered significant research interest due to their capacity to power implantable bioelectronics, portable devices, and biosensors by utilizing biomass as fuel under mild circumstances. Nonetheless, numerous obstacles impeded the commercialization of EBFCs, including their relatively modest power output and poor long-term stability of enzymes. To depict the current progress of EBFC and address the challenges it faces, this review traces back the evolution of EBFC and focuses on contemporary advances such as newly emerged multi or single enzyme systems, various porous framework-enzyme composites techniques, and innovative applications. Besides emphasizing current achievements in this field, from our perspective part we also introduced novel electrode and cell design for highly effective EBFC fabrication. We believe this review will assist readers in comprehending the basic research and applications of EBFCs as well as potentially spark interdisciplinary collaboration for addressing the pressing issues in this field.

3.
Nat Metab ; 5(10): 1787-1802, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37679556

RESUMO

Neuroinflammatory microglia secrete cytokines to induce neurotoxic reactive astrocytes, which are one of the major causes of neuronal death. However, the intrinsic key regulators underlying neurotoxic reactive astrocytes induction are unknown. Here we show that the transmembrane protein 164 (TMEM164) is an early-response intrinsic factor that regulates neurotoxic astrocyte reactivity. TMEM164 overexpression inhibits the induction of neurotoxic reactive astrocytes, maintains normal astrocytic functions and suppresses neurotoxic reactive astrocyte-mediated neuronal death by decreasing the secretion of neurotoxic saturated lipids. Adeno-associated virus-mediated, astrocyte-specific TMEM164 overexpression in male and female mice prevents the induction of neurotoxic reactive astrocytes, dopaminergic neuronal loss and motor deficits in a Parkinson's disease model. Notably, brain-wide astrocyte-specific TMEM164 overexpression prevents the induction of neurotoxic reactive astrocytes, amyloid ß deposition, neurodegeneration and memory decline in the 5XFAD Alzheimer's disease mouse model, suggesting that TMEM164 could serve as a potential therapeutic target for neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Astrócitos , Feminino , Camundongos , Animais , Masculino , Astrócitos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Neurônios/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-37270794

RESUMO

Nucleoside analogues are prevalent in drug design and call for more diversified structures. Bicyclo[1.1.1]pentane (BCP) structure has recently found wide applications in drug discovery. However, incorporation of BCP fragment into nucleoside analogues is hitherto unknown. Thus, from readily available BCP-containing building blocks, six new compounds, including pyrimidine nucleoside analogues, purine nucleoside analogues, and C-nucleoside analogues were prepared in 1-4 steps, generally with good yields.


Assuntos
Nucleosídeos , Pentanos , Nucleosídeos/química
5.
Mol Cells ; 45(12): 923-934, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36572561

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great potential in applications such as regenerative medicine, cardiac disease modeling, and in vitro drug evaluation. However, hPSC-CMs are immature, which limits their applications. During development, the maturation of CMs is accompanied by a decline in their proliferative capacity. This phenomenon suggests that regulating the cell cycle may facilitate the maturation of hPSC-CMs. Aurora kinases are essential kinases that regulate the cell cycle, the role of which is not well studied in hPSC-CM maturation. Here, we demonstrate that CYC116, an inhibitor of Aurora kinases, significantly promotes the maturation of CMs derived from both human embryonic stem cells (H1 and H9) and iPSCs (induced PSCs) (UC013), resulting in increased expression of genes related to cardiomyocyte function, better organization of the sarcomere, increased sarcomere length, increased number of mitochondria, and enhanced physiological function of the cells. In addition, a number of other Aurora kinase inhibitors have also been found to promote the maturation of hPSC-CMs. Our data suggest that blocking aurora kinase activity and regulating cell cycle progression may promote the maturation of hPSC-CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Miócitos Cardíacos , Diferenciação Celular
6.
Stem Cells Transl Med ; 10(6): 922-938, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33481357

RESUMO

Hirschsprung's disease (HSCR) is a common congenital defect. It occurs when bowel colonization by neural crest-derived enteric nervous system (ENS) precursors is incomplete during the first trimester of pregnancy. Several sources of candidate cells have been previously studied for their capacity to regenerate the ENS, including enteric neural crest stem cells (En-NCSCs) derived from native intestine or those simulated from human pluripotent stem cells (hPSCs). However, it is not yet known whether the native NCSCs other than En-NCSCs would have the potential of regenerating functional enteric neurons and producing neuron dependent motility under the intestinal environment. The present study was designed to determine whether premigratory NCSCs (pNCSCs), as a type of the nonenteric NCSCs, could form enteric neurons and mediate the motility. pNCSCs were firstly transplanted into the colon of adult mice, and were found to survive, migrate, differentiate into enteric neurons, and successfully integrate into the adult mouse colon. When the mixture of pNCSCs and human intestinal organoids was implanted into the subrenal capsule of nude mice and grown into the mature tissue-engineered intestine (TEI), the pNCSCs-derived neurons mediated neuron-dependent peristalsis of TEI. These results show that the pNCSCs that were previously assumed to not be induced by intestinal environment or cues can innervate the intestine and establish neuron-dependent motility. Future cell candidates for ENS regeneration may include nonenteric NCSCs.


Assuntos
Intestinos/fisiologia , Crista Neural , Células-Tronco Neurais , Neurônios , Peristaltismo , Animais , Colo , Humanos , Camundongos , Camundongos Nus , Crista Neural/citologia , Células-Tronco Neurais/transplante , Neurônios/citologia , Engenharia Tecidual
7.
Cell Rep ; 33(10): 108455, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296648

RESUMO

The ever-increasing therapeutic and pharmaceutical demand for liver cells calls for systems that enable mass production of hepatic cells. Here we describe a large-scale suspension system that uses human endoderm stem cells (hEnSCs) as precursors to generate functional and transplantable hepatocytes (E-heps) or cholangiocytes (E-chos). hEnSC-derived hepatic populations are characterized by single-cell transcriptomic analyses and compared with hESC-derived counterparts, in-vitro-maintained or -expanded primary hepatocytes and adult cells, which reveals that hepatic differentiation of hEnSCs recapitulates in vivo development and that the heterogeneities of the resultant populations can be manipulated by regulating the EGF and MAPK signaling pathways. Functional assessments demonstrate that E-heps and E-chos possess properties comparable with adult counterparts and that, when transplanted intraperitoneally, encapsulated E-heps were able to rescue rats with acute liver failure. Our study lays the foundation for cell-based therapeutic agents and in vitro applications for liver diseases.


Assuntos
Técnicas de Cultura de Células/métodos , Endoderma/citologia , Hepatócitos/citologia , Células-Tronco Embrionárias Humanas/citologia , Ductos Biliares/citologia , Ductos Biliares/metabolismo , Diferenciação Celular/fisiologia , Endoderma/metabolismo , Endoderma/transplante , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/transplante , Humanos , Fígado/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante
8.
Res Vet Sci ; 129: 66-69, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31945670

RESUMO

Breast cancer is a high incidence disease in humans. Artemisinin is an important extract that is widely used as an antimalarial drug which also serve as effective treatments for cancer. 32 nude mice were injected with 0.2 ml of MDA-MB-231 cell suspension of 2 × 107 cells/ml respectively. The nude mice models were randomly divided into four groups of 8 in each group. Each group was given daily gavage, high dose group: 200 mg/kg/0.1 ml, middle dose group 100 mg/kg/0.1 ml, low dose group 50 mg/kg/0.1 ml, control group: 0.1 ml vegetable oil was fed continuously for 21 days. ELISA was used to detect serum vascular endothelial growth the content of factor VEGF and hypoxia-inducible factor HIF-1α were detected. The expression of Notch pathway-related factors in tumor tissue was detected by fluorescence quantitative assay. ELISA results showed that the serum VEGF decreased significantly in the high dose group compared with the control group (p < .01), while the other dose groups did not have significant (p > .05). The serum HIF-1α in the high dose group compared with the control group, the decrease in HIF-1α was significant (p < .05), and the other groups were not significant (p > .05). The result of fluorescence quantitative section showed that artemisinin could down-regulate the expression of notch signaling related factors notch1, Dll4 and Jagged1, and 200 mg/kg dose group had the most significant effect. It may inhibit the development of tumors by reducing serum angiogenesis-related factors VEGF, HIF-1ɑ and inhibiting the activity of notch1 signaling pathway related factors.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Artemisininas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Animais , Regulação para Baixo , Feminino , Xenoenxertos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
9.
Invest New Drugs ; 38(3): 700-713, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31267379

RESUMO

The bromodomain and extra-terminal domain (BET) family of proteins, especially bromodomain-containing protein 4 (BRD4), has emerged as exciting anti-tumor targets due to their important roles in epigenetic regulation. Therefore, the discovery of BET inhibitors with promising anti-tumor efficacy will provide a novel approach to epigenetic anticancer therapy. Recently, we discovered the new BET inhibitor compound 171, which is derived from a polo-like kinase 1 (PLK1)-BRD4 dual inhibitor based on our previous research. Compound 171 was found to maintain BET inhibition ability without PLK1 inhibition, and there was no selectivity among BET family members. The in vitro and in vivo results both indicated that the overall anti-tumor activity of compound 171 was improved compared with the (+)-JQ-1 or OTX-015 BET inhibitors. Furthermore, we found that compound 171 could regulate the expression of cell cycle-regulating proteins including c-Myc and p21 and induce cell cycle arrest in the G0/G1 phase. However, compound 171 only has a quite limited effect on apoptosis, in considering that apoptosis was only observed at doses greater than 50 µM. To determine the mechanisms underlying cell death, proliferation activity assay was conducted. The results showed that compound 171 induced clear anti-proliferative effects at doses that no obvious apoptosis was induced, which indicated that the cell cycle arresting effect contributed mostly to its anti-tumor activity. The result of this study revealed the anti-tumor mechanism of compound 171, and laid a foundation for the combination therapy in clinical practice, if compound 171 or its series compounds become drug candidates in the future.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Células A549 , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Epigênese Genética/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Acta Pharm Sin B ; 9(2): 351-368, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30972282

RESUMO

Genomic alterations are commonly found in the signaling pathways of fibroblast growth factor receptors (FGFRs). Although there is no selective FGFR inhibitors in market, several promising inhibitors have been investigated in clinical trials, and showed encouraging efficacies in patients. By designing a hybrid between the FGFR-selectivity-enhancing motif dimethoxybenzene group and our previously identified novel scaffold, we discovered a new series of potent FGFR inhibitors, with the best one showing sub-nanomolar enzymatic activity. After several round of optimization and with the solved crystal structure, detailed structure-activity relationship was elaborated. Together with in vitro metabolic stability tests and in vivo pharmacokinetic profiling, a representative compound (35) was selected and tested in xenograft mouse model, and the result demonstrated that inhibitor 35 was effective against tumors with FGFR genetic alterations, exhibiting potential for further development.

11.
Mol Oncol ; 13(7): 1490-1502, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30973670

RESUMO

As a critical feature of the tumor microenvironment, hypoxia is known to be a potent inducer of tumor metastasis, and it has been proposed that the initial steps in metastasis involve epithelial-mesenchymal transition (EMT). The strong correlation among hypoxia, EMT, and metastasis suggests that integrative assessment of gene expression and the DNA modification program of hypoxia-induced EMT via high-throughput sequencing technologies may increase our understanding of the molecular basis of tumor invasion and metastasis. Here, we present the genomewide transcriptional and epigenetic profiles of non-small-cell lung cancer (NSCLC) cells under normoxic and hypoxic conditions. We demonstrate that hypoxia induces EMT along with dynamic alterations of transcriptional expression and epigenetic modifications in both A549 and HCC827 cells. After training using a dataset from patients with invasive and noninvasive lung adenocarcinomas with an artificial neural network algorithm, a characteristic 17-gene panel was identified, consisting of genes involved in EMT, hypoxia response, glycometabolism, and epigenetic modifications. This 17-gene signature clearly stratified NSCLC patients with significant differences in overall survival across three independent datasets. Our study may be suitable as a basis for further selection of gene signatures to potentially guide prognostic stratification in patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Transcriptoma , Hipóxia Tumoral , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Linhagem Celular Tumoral , Epigênese Genética , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/diagnóstico , Prognóstico
12.
Bioorg Med Chem Lett ; 29(6): 844-847, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30713023

RESUMO

Tranylcypromine moiety extracted from LSD1 inhibitors and 6-trifluoroethyl thienopyrimidine moiety from menin-MLL1 PPI inhibitors were merged to give new chemotypes for medicinal chemistry study. Among 15 new compounds prepared in this work, some exhibited nanomolar LSD1 activity and good selectivity over MAO-A/B, low micromolar menin-MLL1 PPI inhibitory activity, as well as submicromolar MV4-11 antiprofilative activities. Intracellular LSD1 engagement of compounds with higher enzymatic and antiproliferative activities was confirmed by CD86 mRNA up-regulation experiments.


Assuntos
Antineoplásicos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Inibidores da Monoaminoxidase/farmacologia , Pirimidinas/farmacologia , Tranilcipromina/farmacologia , Antineoplásicos/síntese química , Antígeno B7-2/genética , Linhagem Celular Tumoral , Humanos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/síntese química , Pirimidinas/síntese química , RNA Mensageiro/metabolismo , Tiofenos/síntese química , Tiofenos/farmacologia , Tranilcipromina/análogos & derivados , Tranilcipromina/síntese química , Regulação para Cima/efeitos dos fármacos
13.
Eur J Med Chem ; 163: 671-689, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30572178

RESUMO

Although lung adenocarcinoma patients have benefited from the development of targeted therapy, patients with lung squamous cell carcinoma (SqCC) have no effective treatment due to the complexity and heterogeneity of the disease. Therefore, basing on the genetic analysis of mutations in lung squamous cell carcinoma to design multi-target inhibitors represents a potential strategy for the medical treatment. In this study, through screening an in-house focused library, we identified an interesting indazole scaffold. And following with binding analysis, we elaborated the structure-activity relationship of this hit compound by optimizing four parts guided by the DDR2 enzymatic assay, which resulted in a potent lead compound 10a. We conducted further optimization of dual enzymatic inhibitions towards FGFR1 and DDR2, two important kinases in lung squamous cell carcinoma. Finally, from the cellular antiproliferative activity tests and in vivo pharmacokinetic test, 3-substituted indazole derivative 11k was found to be a promising candidate and subjected to in vivo pharmacology study with the mouse xenograft models, demonstrating profound anti-tumor efficacy. Additional in vitro druglike assessment reinforced that compound 11k could be valuable for SqCC drug development.


Assuntos
Antineoplásicos/síntese química , Carcinoma de Células Escamosas/tratamento farmacológico , Descoberta de Drogas , Indazóis/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Animais , Carcinoma de Células Escamosas/enzimologia , Receptor com Domínio Discoidina 2/antagonistas & inibidores , Xenoenxertos , Humanos , Indazóis/química , Indazóis/farmacologia , Neoplasias Pulmonares/enzimologia , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Relação Estrutura-Atividade
14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(1): 145-150, 2018 02 25.
Artigo em Chinês | MEDLINE | ID: mdl-29745614

RESUMO

Tissue engineering has emerged as a promising approach for the repair and functional reconstruction of damaged tissues. The bionic and intelligentized scaffolds provide the structural support for cell growth and differentiation as well as tissue regeneration. The surface properties of the biological material implant, the nanotopology in particular, become key aspects in determining the success of the implant. Mesenchymal stem cells (MSC) are widely favored by researchers as the seed cells in tissue engineering. Recently, it has been shown that nanotopographical characteristics of biomaterials regulate a wide range of MSC properties from their cellular behavior and differentiation potential. Herein, this review will provide an update on studies investigating the roles of nanotopography in the development of tissue engineering using MSC.

15.
Eur J Med Chem ; 150: 156-175, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29525435

RESUMO

Recently, several kinase inhibitors were found to also inhibit bromodomains, providing a new strategy for the discovery of bromodomain inhibitors. Along this line, starting from PLK1-BRD4 dual inhibitor BI-2536, we discovered a new series of dihydroquinoxalin-2(1H)-one with aniline and indoline WPF binders as selective BRD4 inhibitors. They showed better BRD4-BD1 potency and negligible PLK1 kinase activity comparing with BI-2536. Additionally, dihydroquinoxalin-2(1H)-ones containing indoline group showed profound activities in molecular and cellular based assays. Throughout the study, compounds 9, 28 and 37 showed significant inhibitory activity for c-Myc or PD-L1 protein expression and mRNA transcription both at concentration of 0.2 and 1 µM. Compound 9 was found possessing the best balance of binding affinity, in vitro metabolic stability and in vivo pharmacokinetic properties. Therefore, it was selected for in vivo pharmacological study. By using MM.1S cell derived xenograft model, we confirmed compound 9 showed comparable in vivo tumor inhibition to phase II investigation drug I-BET762, which, together with the novel WPF binder, further indicated the utility of this series of BRD4 inhibitors.


Assuntos
Compostos de Anilina/farmacologia , Indóis/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Compostos de Anilina/química , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas de Ciclo Celular , Relação Dose-Resposta a Droga , Humanos , Indóis/química , Estrutura Molecular , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
16.
J Cancer ; 8(18): 3675-3681, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151954

RESUMO

Background: Cancer cells have to take metabolic transformation in tumor progression when facing need of increased energy and adequate vascularization. However, molecular mechanism is not fully known. In this study, we showed that expression of carnitine palmitoyltransferase 1C (Cpt1c), as a member of the gate-keeper enzymes , which transferring long-chain fatty acids into mitochondria to further oxidation, which is regulated by AMPK promotes papillary thyroid carcinomas cells survival under metabolic stress conditions. Methods: Firstly, we used qRT-PCR to detect expression of Cpt1c in papillary thyroid carcinomas tissues compared with paired normal tissues. Secondly, to evaluate whether Cpt1c is induced under metabolic stress, models of hypoxia (0.2% oxygen) and glucose deprivation for cultured papillary thyroid carcinomas cells were established. Lastly, KTC-1 cells were treated with AICAR (as an agonist of AMPK) and Compound C (as an inhibitor of AMPK) to investigate the correlation of AMPK activity with Cpt1c expression under metabolic stress. Results: Cpt1c is higher in papillary thyroid carcinomas tissues compared with paired normal tissues. Furthermore, Cpt1c up-regulation promotes cancer cell growth and metastasis. In addition, the results showed that Cpt1c expression is induced by metabolic stress, including hypoxia and low glucose treatment. Consistently, Cpt1c can protect cells from cancer cells death caused by hypoxia and low glucose. Lastly, Cpt1c expression is regulated by AMPK activity. Conclusion: Here we describe that induction of Cpt1c expression facing metabolic stress in papillary thyroid carcinomas is at least partly regulated by AMPK activity and ultimately contribute to development and progression of papillary thyroid carcinomas.

17.
Sci Rep ; 7(1): 14660, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116160

RESUMO

Kuding tea is implicated in alleviating metabolic disorders in traditional Chinese medicine. However, the role of Ilex latifolia Thunb (kuding tea), one of the large leaf kuding tea species, in the prevention of the development of obesity remains to be determined. We show here that 7-week-old male mice treated with an Ilex latifolia Thunb supplement for 14 weeks were resistant to HFD-induced body weight gain and hepatic steatosis, accompanied by improved insulin sensitivity. Ilex latifolia Thunb supplementation dramatically reduced the systemic and tissue inflammation levels of mice via reducing pro-inflammatory cytokine levels, increasing anti-inflammatory cytokine levels in the circulation and inhibiting p38 MAPK and p65 NF-κB signaling in adipose tissue. Together, these results indicate that Ilex latifolia Thunb protects mice from the development of obesity and is a potential compound pool for the development of novel anti-obesity drugs.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ilex/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Chás Medicinais , Aumento de Peso/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Bioorg Med Chem Lett ; 27(22): 4960-4963, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29050780

RESUMO

From a readily available 5-C-Me ribofuranoside, we have realized a reliable route to valuable 5'-deoxy-5'-amino-5'-C-methyl adenosine derivatives at gram scale with confirmed stereochemistry. These adenosine derivatives are useful starting materials for the preparation of 5'-deoxy-5'-amino-5'-C-methyl adenosine derivatives with higher complexity. From one of the new adenosine derivatives, some 5'-deoxy-5'-amino-5'-C-methyl adenosine DOT1L inhibitors were prepared in several steps. Data from DOT1L assay indicated that additional 5'-C-Me group improved the enzyme inhibitory activity.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/antagonistas & inibidores , Adenosina/síntese química , Adenosina/metabolismo , Histona-Lisina N-Metiltransferase , Humanos , Concentração Inibidora 50 , Metiltransferases/metabolismo , Nucleosídeos/síntese química , Nucleosídeos/química , Nucleosídeos/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
19.
Artigo em Inglês | MEDLINE | ID: mdl-28760905

RESUMO

The RNase H (RNH) function of HIV-1 reverse transcriptase (RT) plays an essential part in the viral life cycle. We report the characterization of YLC2-155, a 2-hydroxyisoquinoline-1,3-dione (HID)-based active-site RNH inhibitor. YLC2-155 inhibits both polymerase (50% inhibitory concentration [IC50] = 2.6 µM) and RNH functions (IC50 = 0.65 µM) of RT but is more effective against RNH. X-ray crystallography, nuclear magnetic resonance (NMR) analysis, and molecular modeling were used to show that YLC2-155 binds at the RNH-active site in multiple conformations.


Assuntos
Fármacos Anti-HIV/farmacologia , Domínio Catalítico/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Isoquinolinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonuclease H/antagonistas & inibidores , Sítios de Ligação/fisiologia , Cristalografia por Raios X , Desenho de Fármacos , Transcriptase Reversa do HIV/química , Humanos , Isoquinolinas/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Ligação Proteica , Inibidores da Transcriptase Reversa/química , Ribonuclease H/química
20.
Sci Rep ; 7(1): 2929, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592877

RESUMO

All-trans retinoic acid (ATRA), one of vitamin A derivatives, shows greater growth inhibition of breast cancer cell for ER-positive than ER-negative cells, while triple negative breast cancer cell such as MDA-MB-231 cell is poorly responsive to ATRA treatment. In this study, we found that combination of ω-3 free fatty acids (ω-3 FFAs) and ATRA exhibited synergistic inhibition of cell growth in three subtypes (ER+ MCF7, HER2+ SK-BR-3, Triple negative HCC1806 and MDA-MB-231 cells) of human breast cancer cell lines. The combined treatment of ω-3 FFAs and ATRA resulted in cell cycle arrest. ω-3 FFAs combined with ATRA synergistically provoked cell apoptosis via the caspase signals but not p53. These findings suggest that combined chemotherapy of ω-3 FFAs with ATRA is beneficial for improvement of ATRA sensitivity in breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Tretinoína/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...