Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 323: 117729, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38190953

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium huoshanense C. Z. Tang et S. J. Cheng (DH) is a traditional medicinal herb with a long history of medicinal use. DH has been recorded as protecting the gastrointestinal function. Modern pharmacology research shows that DH regulates intestinal flora, intestinal mucosal immunity, gastrointestinal peristalsis and secretion of digestive juices. At the same time, some studies have shown that DH has a good therapeutic effect on ulcerative colitis, but its mechanism of action has not been fully elucidated. AIMS OF THIS STUDY: To investigate the mechanism and effect of Dendrobium huoshanense C. Z. Tang et S. J. Cheng (DH) in the treatment of ulcerative colitis (UC) by combining network pharmacology and in vivo experimental validation. METHODS: A network pharmacology approach was used to perform component screening, target prediction, PPI network interaction analysis, GO and KEGG enrichment analysis to initially predict the mechanism of DH treatment for UC. Then, the mechanism was validated with the UC mouse model induced by 3% DSS. RESULTS: Based on the network pharmacological analysis, a comprehensive of 101 active components were identified, with 19 of them potentially serving as the crucial elements in DH's effectiveness against UC treatment. Additionally, the study revealed 314 potential core therapeutic targets along with the top 5 key targets: SRC, STAT3, AKT1, HSP90AA1, and PIK3CA. In experiments conducted on live mice with UC, DH was found to decrease the levels of IL-6 and TNF-α in the blood, while increasing the levels of IL-10 and TGF-ß. This led to notable improvements in colon length, injury severity, and an up-regulation of SRC, STAT3, HSP90AA1, PIK3CA, p-AKT1 and PI3K/AKT signaling pathway expression in the colon tissue. CONCLUSIONS: In this study, the active components and main targets of DH for UC treatment were initially forecasted, and the potential mechanism was investigated through network pharmacology. These findings offer an experimental foundation for the clinical utilization of DH.


Assuntos
Colite Ulcerativa , Dendrobium , Medicamentos de Ervas Chinesas , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Classe I de Fosfatidilinositol 3-Quinases , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
2.
Eur J Pharm Sci ; 192: 106641, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972905

RESUMO

OBJECTIVE: Drug Delivery System was constructed using dopamine-coated organic-inorganic hybrid hollow mesoporous organic silica nanoparticles (HMON-PDA) as drug carriers and salvianolic acid B (SAB) as a model drug. Then, we further investigated whether it can inhibit lung metastasis of breast cancer by inhibiting cancer-associated fibroblasts (CAFs). METHODS: The organic-inorganic hybrid hollow mesoporous organic silica nanoparticles (HMON) were prepared. The particle size, zeta potential, and polydispersion coefficient were characterized. High-performance liquid chromatography was used to determine the effect of different feed ratios of HMON and SAB on drug loading rate. Then, SAB-loaded HMON were modified by polydopamine, which is called SAB@HMON-PDA. Cell viability was detected by MTT assay. The migration of 4T1 cells was investigated by wound healing experiment, and the invasion of 4T1 cells was detected by the transwell method. Finally, the mouse breast cancer lung metastasis models were used to explore whether SAB@HMON-PDA can inhibit lung metastasis of breast cancer by inhibiting CAFs. RESULTS: The obtained nanoparticles have hollow spherical structure. The average particle sizes of HMON, SAB@HMON, and SAB@HMON-PDA were 143.5 ± 0.03, 138.3 ± 0.02, and 172.3 ± 0.18 nm, respectively. The zeta potentials were -44.33±0.15, -41.4 ± 1.30, and -24.13±0.47 mV, respectively. When the ratio of HMON to SAB was 2:1, the drug loading rate reached (18.37±0.04)%. In addition, the prepared SAB@HMON-PDA responded to release SAB under acidic and GSH conditions. The prepared SAB@HMON-PDA could inhibit the migration and invasion of 4T1 cells. The results showed that SAB@HMON-PDA and SAB could inhibit lung metastasis of breast cancer in mice, and SAB@HMON-PDA had a more significant inhibitory effect than SAB. CONCLUSION: We successfully prepared SAB@HMON-PDA with the dual response of pH and GSH. SAB@HMON-PDA can inhibit the migration and invasion of 4T1 cells, and the effect is more significant than free SAB. This inhibitory effect may be related to the inhibition of CAFs. In vivo experiments demonstrated that SAB@HMON-PDA can inhibit lung metastasis of breast cancer by inhibiting CAFs, and its effect was more significant than that of free SAB.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Nanopartículas , Neoplasias Cutâneas , Animais , Camundongos , Dióxido de Silício/química , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias Pulmonares/tratamento farmacológico , Porosidade
3.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5205-5215, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114110

RESUMO

This study aims to prepare vitexin albumin nanoparticles(VT-BSA-NPs) to alleviate the low bioavailability of vitexin(VT) in vivo due to its poor water solubility. VT micro powders were prepared by the antisolvent crystallization method, and the morphology, size, and physicochemical properties of VT micro powders were studied. The results showed that the VT micro powder had a particle size of(187.13±7.15) nm, an approximate spherical morphology, and a uniform size distribution. Compared with VT, the chemical structure of VT micro powders has not changed. VT-BSA-NPs were prepared from VT micro powders by desolvation-crosslinking curing method. The preparation process was screened by single factor test and orthogonal test, and the quality evaluation of the optimal prescription particle size, PDI, Zeta potential, EE, and morphology was performed. The results showed that the average particle size of VT-BSA-NPs was(124.33±0.47) nm; the PDI was 0.184±0.012; the Zeta potential was(-48.83±2.20) mV, and the encapsulation rate was 83.43%±0.39%, all of which met the formulation-related requirements. The morphological results showed that the VT-BSA-NPs were approximately spherical in appearance, regular in shape, and without adhesion on the surface. In vitro release results showed a significantly reduced release rate of VT-BSA-NPs compared with VT, indicating a good sustained release effect. LC-MS/MS was used to establish an analytical method for in vivo analysis of VT and study the plasma pharmacokinetics of VT-BSA-NPs in rats. The results showed that the specificity of the analytical method was good, and the extraction recovery was more than 90%. Compared with VT and VT micro powders, VT-BSA-NPs could significantly increase AUC, MRT, and t_(1/2), which was beneficial to improve the bioavailability of VT.


Assuntos
Nanopartículas , Soroalbumina Bovina , Ratos , Animais , Soroalbumina Bovina/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/química
4.
Drug Metab Dispos ; 51(12): 1651-1662, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37775330

RESUMO

Reduced enzyme activity in hepatocellular carcinoma (HCC) and poor targeting limit the application of enzyme-activating prodrugs, which is also detrimental to the effective treatment of HCC. Here, we investigated whether accelerated blood clearance (ABC) phenomenon occurs in HCC models following repeated injections of PEGylated liposomes (PEG-L), thus inducing prodrug accumulation and activation in the liver and exerting highly effective and low-toxicity therapeutic effects on HCC. First, PEGylated liposomal cyclophosphamide was prepared by solvent injection and characterized. Importantly, preinjection of PEG-L induced the ABC phenomenon and activation of CYP3A in both HCC rats and HCC mice by studying the effects of repeated injections of PEG-L on pharmacokinetics and tissue distribution. Next, the efficacy and toxicity of repeated injections of PEG-L in HCC mice were examined, and our data indicate that repeated injections are administered in a manner that significantly enhances the antitumor effect compared with controls, with little or no toxicity to other organs. To further reveal the pharmacokinetic mechanism of PEG-L repeated administration for the treatment of HCC, the protein expression of hepatic CYP3A and the concentration of cyclophosphamide in the liver and spleen of HCC mice by inhibiting CYP3A were analyzed. These results revealed that inducing CYP3A to accelerate the rapid conversion of prodrugs that accumulate significantly in the liver is a key mechanism for the treatment of HCC with repeated injections of PEG-L. Collectively, this work taps into the application potential of the ABC phenomenon and provides new insights into the clinical application of PEGylated nanoformulations. SIGNIFICANCE STATEMENT: This study revealed that repeated injections of PEGylated liposomes could induce the accelerated blood clearance (ABC) phenomenon characterized by hepatic accumulation and CYP3A activation based on hepatocellular carcinoma (HCC) rats and HCC mice. Furthermore, it was verified that induction of the ABC phenomenon dependent on hepatic accumulation and CYP3A activation could enhance the antihepatocellular carcinoma effects of PEGylated anticancer prodrugs in HCC mice. This elucidated the relevant pharmacokinetic mechanisms and unearthed new clues for solving the clinical application of PEGylated nanoparticles.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Pró-Fármacos , Ratos , Camundongos , Animais , Lipossomos , Carcinoma Hepatocelular/tratamento farmacológico , Citocromo P-450 CYP3A , Polietilenoglicóis , Ciclofosfamida
5.
Drug Metab Dispos ; 51(5): 543-559, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36732076

RESUMO

Cytochrome P450 3A4 (CYP3A4), one of the most important members of the cytochrome P450 subfamily, is a crucial catalyst in the metabolism of numerous drugs. As it catalyzes numerous processes for drug activation or inactivation, the pharmacological activities and clinical outcomes of anticancer drugs metabolized by CYP3A4 are highly dependent on the enzyme's activity and expression. Due to the complexity of tumor microenvironments and various influencing factors observed in human in vitro models and clinical studies, the pharmacokinetics of most anticancer drugs are influenced by the extent of induction or inhibition of CYP3A4-mediated metabolism, and these details are not fully recognized and highlighted. Therefore, this interindividual variability due to genetic and nongenetic factors, together with the narrow therapeutic index of most anticancer drugs, contributes to their unique set of exposures and responses, which have important implications for achieving the expected efficacy and minimizing adverse events of chemotherapy for cancer in individuals. To elucidate the mechanisms of CYP3A4-mediated activation/inactivation of anticancer drugs associated with personalized therapy, this review focuses on the underlying determinants that contribute to differences in CYP3A4 metabolic activity and provides a comprehensive and valuable overview of the significance of these factors, which differs from current considerations for dosing regimens in cancer therapy. We also discuss knowledge gaps, challenges, and opportunities to explore optimal dosing regimens for drug metabolic activation/inactivation in individual patients, with particular emphasis on pooling and analyzing clinical information that affects CYP3A4 activity. SIGNIFICANCE STATEMENT: This review focuses on anticancer drugs that are activated/deactivated by CYP3A4 and highlights outstanding factors affecting the interindividual variability of CYP3A4 activity in order to gain a detailed understanding of CYP3A4-mediated drug metabolism mechanisms. A systematic analysis of available information on the underlying genetic and nongenetic determinants leading to variation in CYP3A4 metabolic activity to predict therapeutic response to drug exposure, maximize efficacy, and avoid unpredictable adverse events has clinical implications for the identification and development of CYP3A4-targeted cancer therapeutics.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Citocromo P-450 CYP3A/metabolismo , Antineoplásicos/uso terapêutico , Sistema Enzimático do Citocromo P-450/metabolismo , Neoplasias/tratamento farmacológico , Microambiente Tumoral
6.
Front Pharmacol ; 13: 1064653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479204

RESUMO

Cholestasis, characterized by disturbance of bile formation, is a common pathological condition that can induce several serious liver diseases. As a kind of trigger, estrogen-induced cholestasis belongs to drug-induced cholestasis. Paeoniflorin is the most abundant bioactive constituent in Paeonia lactiflora Pall., Paeonia suffruticosa Andr., or Paeonia veitchii Lynch, a widely used herbal medicine for treating hepatic disease over centuries in China. However, the pharmacologic effect and mechanism of paeoniflorin on estrogen-induced cholestasis remain unclear. In this experiment, the pharmacological effect of paeoniflorin on EE-induced cholestasis in rats was evaluated comprehensively for the first time. Ultra-high-performance liquid chromatography coupled with Q-Exactive orbitrap mass spectrometer was used to monitor the variation of bile acid levels and composition. It was demonstrated that paeoniflorin alleviated 17α-ethinylestradiol (EE)-induced cholestasis dose-dependently, characterized by a decrease of serum biochemical indexes, recovery of bile flow, amelioration of hepatic and ileal histopathology, and reduction of oxidative stress. In addition, paeoniflorin intervention restored EE-disrupted bile acid homeostasis in enterohepatic circulation. Further mechanism studies using western blot, quantitative Real-Time PCR, and immunohistochemical showed that paeoniflorin could upregulate hepatic efflux transporters expression but downregulate hepatic uptake transporter expression. Meanwhile, paeoniflorin reduced bile acids synthesis by repressing cholesterol 7α-hydroxylase in hepatocytes. Paeoniflorin affected the above transporters and enzyme via activation of a nuclear receptor, farnesoid X receptor (FXR), which was recognized as a vital regulator for maintaining bile acid homeostasis. In conclusion, paeoniflorin alleviated EE-induced cholestasis and maintained bile acid homeostasis via FXR-mediated regulation of bile acids transporters and synthesis enzyme. The findings indicated that paeoniflorin might exert a potential therapeutic medicine for estrogen-induced cholestasis.

7.
Int J Pharm ; 623: 121953, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35753535

RESUMO

As the key stromal cells that mediate the desmoplastic reaction, tumor-associated fibroblasts (TAFs) play a critical role in the limited nanoparticle penetration and suppressive immune tumor microenvironment. Herein, we found that salvianolic acid B-loaded PEGylated liposomes (PEG-SAB-Lip) can interfere with the activation of TAFs by inhibiting the secretion of TGF-ß1. After inhibiting the activation of TAFs, collagen deposition in tumors was reduced, and the penetration of nanoparticles in tumors was enhanced. The results of RT-qPCR and immunofluorescence staining showed the high expression of Th1 cytokines and chemokines (CXCL9 and CXCL10) and the recruitment of CD4+, CD8+ T cells, and M1 macrophages in the tumor area. At the same time, the low expression of Th2 cytokine and chemokine CXCL13, as well as the decrease of MDSCs, Tregs, and M2 macrophages were also observed in the tumor area. These results were related to the inactivation of TAFs. The combined treatment of PEG-SAB-Lip and docetaxel-loaded PEG-modified liposomes (PEG-DTX-Lip) can significantly inhibit tumor growth. Moreover, PEG-SAB-Lip further inhibited tumor metastasis to the lung. Therefore, our results showed that PEG-SAB-Lip can remodel the tumor microenvironment and improve the efficacy of nanoparticles.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Benzofuranos , Linfócitos T CD8-Positivos , Fibroblastos/metabolismo , Humanos , Fatores Imunológicos , Imunoterapia , Lipossomos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral
8.
AAPS PharmSciTech ; 23(6): 180, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761120

RESUMO

The combination of functionalized nanoparticles and chemotherapy drugs can effectively target tumor tissue, which can improve efficacy and reduce toxicity. In this article, pPeptide-PDA@HMONs-DOX nanoparticles (phosphopeptide-modified polydopamine encapsulates doxorubicin-loaded hollow mesoporous organosilica nanoparticles) were constructed that based on multiple modification hollow mesoporous organosilica nanoparticles (HMONs). The pPeptide-PDA@HMONs-DOX nanoparticles retain the biological functions of phosphorylated peptide while exhibiting biological safety that are suitable for effective drug delivery and stimulus responsive release. The degradation behaviors showed that pPeptide-PDA@HMONs-DOX has dual-responsive to drug release characteristics of pH and glutathione (GSH). In addition, the prepared pPeptide-PDA@HMONs-DOX nanoparticles have good biological safety, and their anti-tumor efficacy was significantly better than doxorubicin (DOX). This provided new research ideas for the construction of targeted nanodrug delivery systems based on mesoporous silicon. Scheme 1 The preparation of pPeptide-PDA@HMONs-DOX and the process of drug release under multiple responses. (A) Schematic diagram of the synthesis process of pPeptide-PDA@HMONs-DOX. (B) The process in which nanoparticles enter the cell and decompose and release DOX in response to pH and GSH.


Assuntos
Nanopartículas , Neoplasias , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Porosidade , Dióxido de Silício , Silicones
9.
J Pharm Anal ; 12(1): 104-112, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35573881

RESUMO

Chromium is a harmful contaminant showing mutagenicity and carcinogenicity. Therefore, detection of chromium requires the development of low-cost and high-sensitivity sensors. Herein, blue-fluorescent carbon quantum dots were synthesized by one-step hydrothermal method from alkali-soluble Poria cocos polysaccharide, which is green source, cheap and easy to obtain, and has no pharmacological activity due to low water solubility. These carbon quantum dots exhibit good fluorescence stability, water solubility, anti-interference and low cytotoxicity, and can be specifically combined with the detection of Cr(VI) to form a non-fluorescent complex that causes fluorescence quenching, so they can be used as a label-free nanosensor. High-sensitivity detection of Cr(VI) was achieved through internal filtering and static quenching effects. The fluorescence quenching degree of carbon dots fluorescent probe showed a good linear relationship with Cr(VI) concentration in the range of 1-100 µM. The linear equation was F 0/F = 0.9942 + 0.01472 [Cr(VI)] (R 2 = 0.9922), and the detection limit can be as low as 0.25 µM (S/N = 3), which has been successfully applied to Cr(VI) detection in actual water samples herein.

10.
Front Mol Biosci ; 8: 796385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35059436

RESUMO

Extracellular vesicles (EVs) are nanosized particles released by numerous kinds of cells, which are now increasingly considered as essential vehicles of cell-to-cell communication and biomarkers in disease diagnosis and treatment. They contain a variety of biomolecular components, including lipids, proteins and nucleic acids. These functional molecules can be transmitted between tumor cells and other stromal cells such as endothelial cells, fibroblasts and immune cells utilizing EVs. As a result, tumor-derived EVs can deliver molecules to remodel the tumor microenvironment, thereby influencing cancer progression. On the one hand, tumor-derived EVs reprogram functions of endothelial cells, promote cancer-associated fibroblasts transformation, induce resistance to therapy and inhibit the immune response to form a pro-tumorigenic environment. On the other hand, tumor-derived EVs stimulate the immune response to create an anti-tumoral environment. This article focuses on presenting a comprehensive and critical overview of the potential role of tumor-derived EVs-mediated communication in the tumor microenvironment.

11.
ChemMedChem ; 15(20): 1940-1946, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32762008

RESUMO

Controversial biodegradability and nonspecific pre-drug leakage are major limitations for inorganic nanoparticles in cancer treatment. To solve these problems, we developed organic-inorganic hybridized hollow mesoporous silica nanoparticles with polydopamine modifications on the surface to simultaneously achieve enhanced biodegradability and controllable drug release. The morphology and chemical structure of the nanoparticles were characterized by TEM, N2 adsorption-desorption isotherms, TEM-mapping and XPS. Moreover, the release behavior of nanoparticles under various pH conditions and the degradation behavior in the presence of GSH were evaluated. With effective controlled release, HMONs-PTX@PDA were shown to significantly inhibit cancer cell proliferation and achieve antitumor effects in vivo through dual-response release in the tumor microenvironment. Overall, this nanoplatform has significant potential to achieve tumor microenvironment-responsive degradation and release to enhance tumor accumulation, which is very promising for cancer treatment.


Assuntos
Portadores de Fármacos/química , Glutationa/metabolismo , Nanopartículas/química , Neoplasias/tratamento farmacológico , Paclitaxel/uso terapêutico , Dióxido de Silício/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Feminino , Concentração de Íons de Hidrogênio , Indóis/química , Indóis/metabolismo , Camundongos Endogâmicos BALB C , Neoplasias/patologia , Paclitaxel/química , Polímeros/química , Polímeros/metabolismo , Porosidade , Dióxido de Silício/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Liposome Res ; 29(4): 322-331, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29745740

RESUMO

Background and objective: The combination of two or more different mechanisms of drugs in the treatment of cancer has become one of the effective methods. The purpose of this study was to successfully prepare a non-viral delivery system that could efficiently co-delivery siRNA and gambogenic acid (GNA) to improve the anti-cancer efficiency in HepG2 cells. Methods: The delivery system was prepared by a two-step method. First, the GNA-anionic liposome took shape by a solvent evaporation method, and then the liposome was bound to the PEI/siRNA complex by electrostatic interaction to form the final carrier system (lipopolyplexes). Agarose gel electrophoresis, MTT, particle size and zeta potential were detected to analyse the lipopolyplexes formation. The transfection efficiency of siRNA was determined by confocal laser scanning microscopy and flow cytometry. Western blotting was used to assess the VEGF protein expression levels of HepG2 cells. The cell apoptosis assay was used to assess the anti-tumour superiority of lipopolyplexes. Results: GNA-PEI/siRNA-liposome (lipopolyplexes) are significantly less cytotoxicity compared to PEI mediated carriers. Simultaneously, the results of flow cytometry and confocal laser scanning microscopy indicated that the lipopolyplexes could successfully carry siRNA into the cytoplasm, and the western-blot result evidence that the delivery system has a potential for VEGF to express down. Also compared with the control group, the results of apoptosis test suggest that the lipopolyplexes can significantly promote cell apoptosis. Conclusion: The delivery system has a potential in the combination of various drugs for cancer therapy in future.


Assuntos
Antineoplásicos/química , Lipossomos/química , Polietilenoimina/química , RNA Interferente Pequeno/química , Fator A de Crescimento do Endotélio Vascular/genética , Xantenos/química , Ânions/química , Apoptose/efeitos dos fármacos , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada/métodos , Citoplasma/metabolismo , Liberação Controlada de Fármacos , Inativação Gênica/efeitos dos fármacos , Terapia Genética/métodos , Células Hep G2 , Humanos
13.
J Chromatogr A ; 1580: 2-11, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30391033

RESUMO

Currently, the pharmacokinetics of liposomes was researched in vivo by measuring the total amount of drug in plasma. This method of using the total drug amount instead of the free drug amount virtually increase the apparent exposure and apparent biological distribution. To solve this problem, we developed a rapid and efficient method by using well-established streptavidin-functional Fe3O4@PDA as the separation nanoprobes to efficiently isolate biotin-labeled DTX-liposomes over 75% from plasma in the presence of magnetic field. The isolation procedure takes only 20 min and the concentration of DTX in liposomes from plasma was determined by LC-MS/MS. The method for the determination of DTX in plasma was linear in the range of 5-5000 ng/mL, and the correlation coefficient was 0.9989. Results obtained in this study clearly demonstrated that the pharmacokinetic parameters of non-liposomal drug and total drug are different in vivo. Therefore, traditional method for studying the pharmacokinetics of liposomes in vivo is unreasonable, and the new method mentioned here provided a strategy for studying the pharmacokinetics of liposomes.


Assuntos
Química Farmacêutica/métodos , Lipossomos/sangue , Farmacocinética , Animais , Química Farmacêutica/instrumentação , Cromatografia Líquida , Cinética , Lipossomos/metabolismo , Magnetismo , Plasma/química , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
14.
J Gene Med ; 19(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29106062

RESUMO

BACKGROUND: Drug resistance cancer cells have become a major problem in chemotherapy. To solve this problem, the co-delivery of small interefering RNA (siRNA) and 5-fluorouracil chitosan nanoparticles was employed, aiming to reverse the multidrug resistance of gastric cancer SGC-7901 cells in vitro. METHODS: Chitosan nanoparticles were prepared using an ionic gel method. siRNA nanoparticles were characterized by gel retardation assays. Particle size and zeta potential were measured to confirm nanoparticle formation. The transfection efficiency of siRNA was determined by flow cytometry and high-content screening. Western blotting and a quantitative real-time-polymerase chain reaction were used to assess the silencing efficiency of siRNA. Accumulation and efflux experiments for rhodamine-123, cell migration experiments, cell sensitivity analyses and cell apoptosis assays were used to determine whether siRNA could reverse multidrug resistance. A systemic toxicity assay was used to evaluate the safety of nanoparticles. RESULTS: Compared to naked siRNA, the co-delivery system demonstrated a higher transfection efficiency and gene silencing efficiency by inhibiting the efflux of P-glycoprotein and cell migration. Moreover, the combination treatment with siRNA and 5-fluorouracil co-delivered by chitosan nanoparticles can increase the sensitivity of drug resistance cells and cell apoptosis. Finally, the safety of nanoparticles was evaluated in vivo and the results obtained suggested that nanoparticles did not have any obvious toxicity. CONCLUSIONS: Co-delivery of siRNA and 5-fluorouracil chitosan nanoparticles is an attractive strategy for overcoming multidrug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , RNA Interferente Pequeno/genética , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quitosana/química , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/química , Humanos , Masculino , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/ultraestrutura , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
15.
Asian J Pharm Sci ; 12(5): 418-423, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32104354

RESUMO

The sustained-release properties of the biodegradable nano-drug delivery systems were used to improve the residence time of the chemotherapeutic agent in the body. These drug delivery systems were widely used to deliver chemotherapeutic drugs. The 5-fluorouracil loaded chitosan nanoparticles prepared in this paper have the above advantage. Here, we found that when the mass ratio of 5-fluorouracil and chitosan was 1:1, the maximum drug loading of nanoparticles was 20.13 ± 0.007%, the encapsulation efficiency was 44.28 ± 1.69%, the particle size was 283.9 ± 5.25 nm and the zeta potential was 45.3 ± 3.23 mV. The prepared nanoparticles had both burst-release and sustained-release phases in vitro release studies. In addition, the inhibitory effect of the prepared nanoparticles on gastric cancer SGC-7901 cells was similar to that of 5-fluorouracil injection, and the blank vector had no obvious inhibitory effect on SGC-7901 cells. In the pharmacokinetic study of rats in vivo, we found that AUC (0-t), MRT (0-t) and t 1/2z of nanoparticles were significantly increased in vivo compared with 5-fluorouracil solution, indicating that the prepared nanoparticles can play a role in sustained-release.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...