Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Neurosci ; 133(6): 604-611, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34219583

RESUMO

BACKGROUND: Aquaporin 4 (AQP4), usually expressed at astrocytes end-feet, is a main component of the lymph-lymphatic system and promotes paravascular cerebrospinal fluid-interstitial fluid exchange. Moreover, angiotensin II type 1 (AT1) receptor affects amyloid ß (Aß) levels. This study aimed to detect the effect of AT1 receptor deficiency on the blood-brain barrier (BBB) of traumatic brain injury (TBI) mice and the effect on Aß level and glial lymphatic circulation. METHODS: TBI model was built using AT1 receptor knockout mice (AT1-KO) and C57BL/6 mice (wild type, WT). BBB integrity was detected by Evans blue extravasation. The expression of the astrocytic water channel AQP4 and astrocyte activation were evaluated with immunofluorescence. The expressions of amyloid precursor protein (APP), junction protein zonula occludens protein-1 (ZO-1) and occludin in mice brain were detected by Western blot (WB). Aß levels were assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS: AT1 receptor deficiency defended BBB integrity and rescued occludin and ZO-1 decrease in mice brain induced by TBI. AT1-KO mice had less increase of APP expression and Aß 1-42, Aß 1-40 levels compared to WT mice under TBI. Moreover, AT1 receptor deficiency was found to significantly inhibit AQP4 depolarization after TBI. CONCLUSION: T1 receptor deficiency attenuated TBI-induced impairments of BBB by rescuing tight junction proteins and inhibited AQP4 polarization, thus improving the function of glymphatic system to enhance interstitial Aß clearance in TBI mice brain.


Assuntos
Barreira Hematoencefálica , Receptor Tipo 1 de Angiotensina , Receptor Tipo 1 de Angiotensina/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Ocludina/metabolismo , Ocludina/farmacologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Aquaporina 4/metabolismo , Animais , Camundongos
2.
Neurol Res ; 44(8): 692-699, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35189787

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a common clinical condition caused by external force. Aquaporin-4 (AQP4) in astrocytes participates in the generation of cell swelling in TBI. METHODS: This research explored the effect of AQP4 gene silencing in a TBI rat model. A hydraulic craniocerebral trauma instrument was employed for establishing the TBI rat model. AQP4 expression in the brain was inhibited by the injection of AQP4 shRNA-lentiviral vector. The expression of relative genes was evaluated by Western blot and qRT-PCR. Neuronal apoptosis was analyzed by TUNEL assay. RESULTS: AQP4 shRNA treatment inhibited AQP4 expression in the brain of rats with TBI. AQP4 shRNA alleviated TBI-induced brain edema and neurological deficit in rats. Neuronal apoptosis and astrocyte activation in TBI rats were reduced by AQP4 silencing. CONCLUSION: This research demonstrated that AQP4 shRNA-induced silencing of AQP4 in the TBI rat model reduced the expression of AQP4 and GFAP, alleviated brain edema, neurological deficit, neuronal apoptosis and inhibited astrocyte activation.


Assuntos
Aquaporina 4 , Edema Encefálico , Lesões Encefálicas Traumáticas , Animais , Aquaporina 4/genética , Astrócitos , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/terapia , Inativação Gênica , Lentivirus/genética , Lentivirus/metabolismo , Neuroproteção , RNA Interferente Pequeno , Ratos
3.
Neuroreport ; 32(3): 188-197, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33470761

RESUMO

Pyroptosis has been reported to contribute to the traumatic brain injury (TBI) process. Ac-FLTD-CMK is a newly synthesized pyroptosis inhibitor. However, whether Ac-FLTD-CMK inhibits pyroptosis and plays a neuroprotective role after TBI is unknown. The present study aimed to determine the effects of Ac-FLTD-CMK on TBI in a mouse model. Male C57BL/6 mice were randomly divided into sham, TBI + vehicle, and TBI + Ac-FLTD-CMK groups. TBI was induced using a weight-drop apparatus. Intraventricular injection of Ac-FLTD-CMK was performed 30 min after TBI. Caspase-1, caspase-11, gasdermin-D (GSDMD), and caspase-3 expression in the peri-contusional cortex were assessed by western blotting. Interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) expression in the peri-contusional cortex were measured using ELISA. Behavioral experiments, brain water content, Evans blue extravasation, lactate dehydrogenase (LDH) release, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining were also performed. The results showed that Ac-FLTD-CMK administration significantly downregulated caspase-1 p20, caspase-11 p20, GSDMD N-terminal, IL-1ß, and IL-18 expression; reduced LDH release; alleviated neuronal death; attenuated brain edema and blood-brain barrier damage; and improved neurobehavioral function. These findings indicate that Ac-FLTD-CMK treatment suppresses pyroptosis and protects mice against TBI.


Assuntos
Contusão Encefálica/metabolismo , Encéfalo/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Fármacos Neuroprotetores/farmacologia , Piroptose/efeitos dos fármacos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Caspase 1/efeitos dos fármacos , Caspase 1/metabolismo , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Caspases Iniciadoras/efeitos dos fármacos , Caspases Iniciadoras/metabolismo , Modelos Animais de Doenças , Interleucina-18/metabolismo , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Teste de Campo Aberto , Proteínas de Ligação a Fosfato/efeitos dos fármacos , Proteínas de Ligação a Fosfato/metabolismo , Teste de Desempenho do Rota-Rod
4.
Front Neurol ; 11: 707, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765412

RESUMO

Background: The glymphatic pathway has been shown to be impaired in traumatic brain injury (TBI). Omega-3 polysaturated fatty acids (Omega-3, PUFAs) are involved in the clearance of amyloid-ß through the glymphatic system and this effect is Aquaporin-4 (AQP4) dependent. We hypothesize that Omega-3 PUFAs can alleviate neurological impairment in TBI by protecting the glymphatic pathway. Methods: We pretreated mice with Omega-3 PUFAs rich fish oil and introduced TBI in the mice. Neurological functions were assessed through the modified neurological severity score (mNSS) system and Rota-rod test. Aß42 levels and radioisotope clearance were examined to determine the function of glymphatic system. AQP4 protein and mRNA expressions and its polarity were examined in fish oil treated TBI mice or control mice. Finally, the integrity of blood-brain barrier was determined by Evans blue extravasation and measurement of tight junction proteins (ZO-1 and Occludin) levels. Results: TBI surgery induced significant neurological functional impairment, Omega-3 PUFAs attenuated TBI-induced neurological impairment, as evidenced by reduced mNSS, improved performance in the Rota-rod test. Furthermore, Omega-3 PUFAs improved glymphatic clearance after induction of TBI in mice, reduced Aß42 accumulation, partially restored the clearance of both 3H-mannitol and 14C-Inulin. Omega-3 PUFAs also suppressed AQP4 expression and partially prevented loss of AQP4 polarity in mice undergoing TBI. Finally, Omega-3 PUFAs protected mice from TBI induced blood-brain barrier disruption. Conclusion: Omaga-3 PUFAs attenuate neurological function by partially restoring the AQP4 dependent glymphatic system in mice with TBI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA