Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(7): 3645-3658, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36645331

RESUMO

BACKGROUND: Tilapia skin collagen hydrolysates (TSCHs) are the product of enzymatic hydrolysis of collagen, which is mainly extracted from tilapia skin. The components of TSCHs have recently been reported to play a preventive role in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). However, it has not been illustrated whether TSCHs can prevent against DSS-induced UC via the gut microbiota and its derived metabolites. RESULTS: TSCHs are mainly composed of amino acids, which have similar characteristics to collagen, with most having a molecular weight below 5 kDa. In a mouse model of UC, TSCHs had no toxic effect at a dose of 60 g kg-1 and could reduce body weight changes, colon length, histopathological changes and score, and the level of the serum inflammatory cytokine interleukin (IL)-6. Concurrently, 16 S rRNA sequencing showed that TSCHs significantly reduced the abundance of Bacteroidetes and Proteobacteria at the phylum level and norank_f__Muribaculaceae and Escherichia-Shigella at the genus level, while they increased the abundance of Firmicutes at the phylum level and Lachnoclostridium, Allobaculum, Enterorhabdus, and unclassified__f__Ruminococcaceae at the genus level. Target metabolomic analysis showed that TSCHs elevated the concentration of total acid, acetic acid, propanoic acid, and butanoic acid, but reduced isovaleric acid concentrations. Moreover, Pearson correlation analysis revealed that Allobaculum, unclassified_Ruminococcaceae, and Enterorhabdus were positively correlated with acetic acid and butyric acid, but not Escherichia-Shigella. CONCLUSION: These findings suggest that TSCHs can prevent UC by modulating gut microbial and microbiota-derived metabolites. © 2023 Society of Chemical Industry.


Assuntos
Actinobacteria , Colite Ulcerativa , Colite , Tilápia , Animais , Camundongos , Colite Ulcerativa/prevenção & controle , Genes de RNAr , Colo , Ácido Acético , Firmicutes , Bacteroidetes , Ácido Butírico , Colágeno , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
J Pharm Pharmacol ; 73(7): 881-892, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33836071

RESUMO

OBJECTIVES: Milletia speciosa Champ (MS), a traditional Chinese medicine, has the abilities of antistress, antifatigue, anti-oxidation and so on. In our previous study, MS was found to antidepression while the underlying mechanism of which needs further elucidation. METHODS: Here, a proton nuclear magnetic resonance (1H-NMR)-based metabonomics combined network pharmacology research approach was performed to investigate the antidepressive mechanism of MS act on mouse with chronic unpredictable mild stress-induced depression. KEY FINDINGS: Results showed that MS could alleviate the ethology of depression (including sucrose preference degree, crossing lattice numbers and stand-up times) and disordered biochemical parameters (5-hydroxytryptamine, norepinephrine and brain-derived neurotrophic factor). Metabonomics study and network pharmacology analysis showed that MS might improve depression through synergistically regulating five targets including Maoa, Maob, Ache, Ido1 and Comt, and three metabolic pathways such as tryptophan metabolism, synthesis of neurotransmitter and phospholipid metabolism. CONCLUSIONS: This study for the first time preliminary clarified the potential antidepressive mechanism of MS and provided theoretical basis for developing MS into novel effective antidepressant.


Assuntos
Transtorno Depressivo , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica/métodos , Millettia , Farmacologia em Rede/métodos , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/etiologia , Transtorno Depressivo/metabolismo , Medicina Tradicional Chinesa/métodos , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Estresse Psicológico/complicações
4.
Molecules ; 25(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722086

RESUMO

Oxime derivatives of dehydrocholic acid and its esters were designed for anti-hepatitis B virus (HBV) drugs according to principles of assembling active chemical fragments. Twelve compounds were synthesized from dehydrocholic acid by esterification and oxime formation, and their anti-hepatitis B virus (HBV) activities were evaluated with HepG 2.2.15 cells. Results showed that 5 compounds exhibited more effective inhibition of HBeAg than positive control, among them 2b-3 and 2b-1 showed significant anti-HBV activities on inhibiting secretion of HBeAg (IC50 (2b-3) = 49.39 ± 12.78 µM, SI (2b-3) = 11.03; IC50 (2b-1) = 96.64 ± 28.99 µM, SI (2b-1) = 10.35) compared to the Entecavir (IC50 = 161.24 µM, SI = 3.72). Molecular docking studies showed that most of these compounds interacted with protein residues of heparan sulfate proteoglycan (HSPG) in host hepatocyte and bile acid receptor.


Assuntos
Antivirais/síntese química , Ácido Desidrocólico/análogos & derivados , Antígenos E da Hepatite B/metabolismo , Oximas/síntese química , Antivirais/química , Antivirais/farmacologia , Esterificação , Guanina/análogos & derivados , Guanina/farmacologia , Células Hep G2 , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/metabolismo , Antígenos E da Hepatite B/química , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oximas/química , Oximas/farmacologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
5.
J Pharm Pharmacol ; 72(8): 1133-1143, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32419180

RESUMO

OBJECTIVES: To provide a comprehensive study of the intervention mechanism and compatible regularity of Chaihu Shu Gan San (CSGS) in a chronic unpredictable mild stress (CUMS)-induced depression model. METHODS: Ethological study and ELISA assay were applied to measure the phenotypes of depression after CUMS stimulate and assess the antidepressant activity of fluoxetine, CSGS and its compatibilities. The serum metabolic profile changes were revealed by untargeted Q/TOF MS-based metabolomics followed by multivariate statistical analysis. KEY FINDINGS: CSGS exhibits an significant intervention effect on CUMS-induced depression. After the multivariate statistical analysis, 17 potential serum biomarkers were identified and 16 of them could be regulated by CSGS. The intervention of CSGS on CUMS-induced depression involved five key pathways. Moreover, each functional unit (monarch, minister, assistant and guide medicine) in CSGS regulates different metabolites and metabolic pathways to achieve different effects on antidepressant; however, their intervention efficacies are inferior to the holistic formula, which may be due to the synergism of bioactive ingredients in the seven herbs of CSGS. CONCLUSIONS: CSGS produced an obvious antidepressant activity. The comprehensive and holistic metabolomics approach could be a powerful tool to study the intervention mechanism and the compatibility rule of traditional Chinese medicine.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Depressão/prevenção & controle , Metabolismo Energético/efeitos dos fármacos , Metabolômica , Extratos Vegetais/farmacologia , Estresse Psicológico/complicações , Animais , Biomarcadores/sangue , Cromatografia Líquida , Depressão/sangue , Depressão/etiologia , Depressão/psicologia , Modelos Animais de Doenças , Masculino , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray , Estresse Psicológico/psicologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-30594827

RESUMO

Danggui-Sini Decoction (DSD) is one of the most widely used traditional Chinese medicine formulae (TCMF) for treating various diseases caused by cold coagulation and blood stasis due to its effect of nourishing blood to warm meridians in clinical use. However, studies of the mechanism of how it dispels blood stasis and its compatible regularity are challenging because of the complex pathophysiology of blood stasis syndrome (BSS) and the complexity of DSD, with multiple active ingredients acting on different targets. Observing variations of endogenous metabolites in rats with BSS after administering DSD may further our understanding of the mechanism of BSS and the compatible regularity of DSD. In this study, to understand the pathogenesis of BSS and assess the compatibility effects of DSD, an ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry-based untargeted metabolomics approach was used. Serum metabolic profiles in rats with BSS that was induced by an ice water bath associated with subcutaneous injection of epinephrine hydrochloride were compared with the intervention groups which were administered with DSD or its compatibility. Using pattern recognition analysis, a clear separation between the BSS model and control group was observed; DSD and its compatibility intervention groups were clustered closer toward the control than the model group, which corroborates results of hemorheology studies. In addition, 20 metabolites were considered as potential biomarkers associated with the development of BSS. Nine metabolites were regulated by DSD in intervening blood stasis, they were considered to be correlated with the effect of nourishing blood to warm meridians. Additionally, the results suggested that the intervention effect of DSD on BSS may involve regulating four pathways, namely, arachidonic acid metabolism, glycerophospholipid metabolism, bile acid biosynthesis, and pyruvate metabolism. Moreover, each functional unit (monarch, minister, and assistant) in DSD regulates different metabolites and metabolic pathways to achieve different effects on dispelling blood stasis; however, their intervention efficacies are inferior to the holistic formula, which may be due to the synergism of the bioactive ingredients in seven herbs of DSD. This study demonstrated that metabolomics is a powerful tool for evaluating the efficacy and compatibility effects of traditional Chinese medicine (TCM).


Assuntos
Viscosidade Sanguínea/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Animais , Biomarcadores/sangue , Medicamentos de Ervas Chinesas/administração & dosagem , Feminino , Medicina Tradicional Chinesa , Redes e Vias Metabólicas , Ratos , Ratos Sprague-Dawley
7.
Cell Physiol Biochem ; 51(2): 897-908, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30466104

RESUMO

BACKGROUND/AIMS: Activated hepatic stellate cells (HSCs) are the major source of extracellular matrix (ECM). Therefore inhibiting HSC activation is considered as an effective strategy to inhibit the process of liver fibrosis. This study aimed to investigate the underlying mechanism of methyl helicterate (MH) isolated from Helicteres angustifolia on the activation of HSCs. METHODS: HSC-T6 cells were treated with various concentration of MH and autophagy was inhibited by 3-Methyl adenine (3-MA) or RNA interference. Cell viability was observed by MTT assay and cell colony assay. Cell cycle and apoptosis were analyzed using flow cytometry. Autophagic vacuoles were observed by transmission electron microscopy and monodansyl cadaverine (MDC) staining. Moreover, autophagy-related genes and proteins were detected using real-time PCR and Western blot assays, respectively. RESULTS: MH significantly inhibited HSC activation, as evidenced by the inhibition of cell viability, colony formation and the expression of α-SMA and collagen I. MH caused cell cycle arrest in G2/M phase. Moreover, MH significantly induced apoptosis through regulating the mitochondria-dependent pathway and the activity of caspases. MH treatment significantly increased lysosomes and autophagosomes, and enhanced the formation of autophagic vacuoles and autophagic flux. Interestingly, inhibiting autophagy by 3-MA or RNA interference abolished the ability of MH in inhibiting HSC activation. On the other hand, induction of autophagy promoted MH-induced HSC apoptosis. Further study showed that MH-induced HSC apoptosis and autophagy was mediated by the JNK and PI3K/Akt/mTOR pathways. CONCLUSION: Our results demonstrate that MH-induced HSC apoptosis and autophagy may be one of the important mechanisms for its anti-fibrosis effect.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Triterpenos/farmacologia , Actinas/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Caspase 3/metabolismo , Colágeno Tipo I/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
8.
Arch Med Sci ; 14(5): 1163-1172, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30154901

RESUMO

INTRODUCTION: Diabetes mellitus is characterized by hyperglycaemia causing changes in plasma lipoproteins, which leads to insulin resistance, secretion defects or both. The present study aimed to evaluate the ability of 2-dodecyl-6-methoxy-cyclohexa-2,5-diene-1,4-dione (DMDD) isolated from Averrhoa carambola L. roots to lower hyperglycaemia and to investigate its potential mechanism in diabetic mice. MATERIAL AND METHODS: DMDD was isolated using a column chromatographic technique. Experimental mice were fed with a high-fat diet for a month and were intravenously injected with streptozotocin (80 mg/kg, single dose). Diabetic mice were orally administered DMDD (12.5, 25, 50 mg/kg) and 50 mg/kg pioglitazone for 15 days. Fasting blood glucose (FBG), fasting blood insulin (FINS), pancreatic insulin content, interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), as well as serum total cholesterol (TC), triglyceride (TG) and free fatty acid (FFA) were determined. Adipose tissue was assessed by histological examination, immunohistochemistry, western blot and reverse transcription-polymerase chain reaction methods. RESULTS: DMDD significantly increased the insulin level (all p < 0.05). In contrast, FBG, IL-6, TNF-α, TC, TG and FFA were significantly decreased (all p < 0.05). However, DMDD induced the activation of adipocyte peroxisome proliferator-activated receptor γ (PPAR-γ), confirmed by increased protein and mRNA expression of PPAR-γ. CONCLUSIONS: DMDD possessed hypoglycaemic activity due to its potential mechanism involving PPARγ-mediated adipocyte endocrine regulation.

9.
J Pharm Biomed Anal ; 159: 252-261, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-29990893

RESUMO

Liver fibrosis is a common consequence of chronic liver diseases resulting from multiple etiologies. Furthermore, prolonged unresolved liver fibrosis may gradually progress to cirrhosis, and eventually evolve into hepatocellular carcinoma (HCC). Corydalis saxicola Bunting (CS), a type of traditional Chinese folk medicine, has been reported to have hepatoprotective effects on the liver. However, the exact mechanism of how it cures liver fibrosis requires further elucidation. In this work, an integrated approach combining proton nuclear magnetic resonance (1H-NMR)-based metabonomics and network pharmacology was adopted to elucidate the anti-fibrosis mechanism of CS. Metabonomic study of serum biochemical changes by carbon tetrachloride (CCl4)-induced liver fibrosis in rats after CS treatment were performed using 1H-NMR analysis. Metabolic profiling by means of partial least squares-discriminate analysis (PLS-DA) indicated that the metabolic perturbation caused by CCl4 was reduced after CS treatment. As a result, lipids, leucine, alanine, acetate, O-acetyl-glycoprotein and creatine were significantly restored after CS treatment, which regulated valine, leucine and isoleucine metabolism; arginine and proline metabolism; lipid metabolism and pyruvate metabolism. Additionally, 157 potential targets of CS and 265 targets of liver fibrosis were identified by means of network pharmacology. Subsequently, 5 target proteins, which are the intersection of potential CS targets and liver fibrosis targets, indicated that CS has potential anti-fibrosis effects through regulating alanine aminotransferase (ALT) activity, the farnesoid X receptor (FXR), cyclooxygenase-2 (COX-2), matrix metalloproteinase-1 (MMP-1) and angiotensinogen. Chelerythrine and sanguinarine were the potential active compounds in CS for treating liver fibrosis through regulating ALT activity. This study is the first report to study the anti-fibrosis effects of CS on the basis of combining a metabonomics and network pharmacology approaches, and it may be a potentially powerful tool to study the efficacy and mechanisms of traditional Chinese folk medicines.


Assuntos
Tetracloreto de Carbono/toxicidade , Corydalis , Cirrose Hepática/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Extratos Vegetais/uso terapêutico , Animais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/prevenção & controle , Masculino , Extratos Vegetais/isolamento & purificação , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
10.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1061-1062: 282-291, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763759

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by persistent joint inflammation leading to bone and cartilage damage and even disability. However, the pathogenesis of RA is multi-factorial and to a large degree, remains unknown. Danggui Sini decoction (DSD), a traditional Chinese medicine (TCM) formula, has been widely used as a remedy for rheumatoid arthritis (RA) in recent years. In our study, 1H-nuclear magnetic resonance (1H NMR) based metabolomics analysis of 7 potential biomarkers, including taurine (1), urea (2), betaine (3), pyruvate (4), hippurate (5), succinate (6) and acetone (7) was performed to investigate the progression of RA and assess the efficacy of DSD in collagen-induced arthritis (CIA) rats. According to pathway analysis using identified metabolites and correlation construction, taurine and hypotaurine metabolism, gut microbiota metabolism, pyruvate metabolism, glycolysis/gluconeogenesis, the citrate cycle (TCA cycle) and lipid metabolism were recognized as being the most influenced metabolic pathways associated with RA. As a result, deviations of metabolites 1, 3, 4, 5, 6 and 7 in CIA rats were improved by DSD, which suggested that DSD mediated the abnormal metabolic pathways synergistically. In summary, the efficacy and its underlying therapeutic mechanisms of DSD on RA were systematically investigated and expect to provide a new insight in relevant studies of other TCM formulas.


Assuntos
Artrite Experimental/metabolismo , Biomarcadores/urina , Medicamentos de Ervas Chinesas/farmacologia , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Animais , Artrite Experimental/urina , Biomarcadores/química , Medicamentos de Ervas Chinesas/administração & dosagem , Feminino , Redes e Vias Metabólicas/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular/métodos , Ratos , Ratos Sprague-Dawley
11.
J Pharm Biomed Anal ; 140: 199-209, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28363136

RESUMO

Chronic liver injury has been shown to cause liver fibrosis due to the sustained pathophysiological wound healing response of the liver, and eventually progresses to cirrhosis. The total alkaloids of Corydalis saxicola Bunting (TACS), a collection of important bioactive ingredients derived from the traditional Chinese folk medicine Corydalis saxicola Bunting (CS), have been reported to have protective effects on the liver. However, the underlying molecular mechanisms need further elucidation. In this study, the urinary metabonomics and the biochemical changes in rats with carbon tetrachloride (CCl4)-induced chronic liver injury due to treatment TACS or administration of the positive control drug-bifendate were studied via proton nuclear magnetic resonance (1H NMR) analysis. Partial least squares-discriminate analysis (PLS-DA) suggested that metabolic perturbation caused by CCl4 damage was recovered with TACS and bifendate treatment. A total of seven metabolites including 2-oxoglutarate, citrate, dimethylamine, taurine, phenylacetylglycine, creatinine and hippurate were considered as potential biomarkers involved in the development of CCl4-induced chronic liver injury. According to pathway analysis using identified metabolites and correlation network construction, the tricarboxylic acid (TCA) cycle, gut microbiota metabolism and taurine and hypotaurine metabolism were recognized as the most affected metabolic pathways associated with CCl4 chronic hepatotoxicity. Notably, the changes in 2-oxoglutarate, citrate, taurine and hippurate during the process of CCl4-induced chronic liver injury were significantly restored by TACS treatment, which suggested that TACS synergistically mediated the regulation of multiple metabolic pathways including the TCA cycle, gut microbiota metabolism and taurine and hypotaurine metabolism. This study could bring valuable insight to evaluating the efficacy of TACS intervention therapy, help deepen the understanding of the hepatoprotective mechanisms of TACS and enable optimal diagnosis of chronic liver injury.


Assuntos
Corydalis , Metabolômica , Alcaloides , Animais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Fígado , Ratos , Ratos Sprague-Dawley
12.
J Pharm Biomed Anal ; 129: 70-79, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27399344

RESUMO

Corydalis saxicola Bunting (CS), a traditional Chinese folk medicine, has been effectively used for treating liver disease in Zhuang nationality in South China. However, the exact hepatoprotective mechanism of CS was still looking forward to further elucidation by far. In present work, metabonomic study of biochemical changes in the serum of carbon tetrachloride (CCl4)-induced acute liver injury rats after CS treatment were performed using proton nuclear magnetic resonance ((1)H-NMR) analysis. Metabolic profiling by means of principal components analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) indicated that the metabolic perturbation caused by CCl4 was reduced by CS treatment. A total of 9 metabolites including isoleucine (1), lactate (2), alanine (3), glutamine (4), acetone (5), succinate (6), phosphocholine (7), d-glucose (8) and glycerol (9) were considered as potential biomarkers involved in the development of CCl4-induced acute liver injury. According to pathway analysis by metabolites identified and correlation network construction by Pearson's correlation coefficency matrix, alanine, aspartate and glutamate metabolism and glycerolipid metabolism were recognized as the most influenced metabolic pathways associated with CCl4 injury. As a result, notably, deviations of metabolites 1, 3, 4, 7 and 9 in the process of CCl4-induced acute liver injury were improved by CS treatment, which suggested that CS mediated synergistically abnormalities of the metabolic pathways, composed of alanine, aspartate and glutamate metabolism and glycerolipid metabolism. In this study, it was the first report to investigate the hepatoprotective effect of the CS based on metabonomics strategy, which may be a potentially powerful tool to interpret the action mechanism of traditional Chinese folk medicines.


Assuntos
Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Corydalis , Metabolômica/métodos , Extratos Vegetais/uso terapêutico , Animais , Espectroscopia de Ressonância Magnética/métodos , Masculino , Extratos Vegetais/isolamento & purificação , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
13.
Gene ; 591(2): 411-6, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27317894

RESUMO

In this study, we evaluated the effect of puerarin (PR) on diabetic nephropathy (DN) in streptozotocin (STZ)-induced diabetic mice. The fasting blood glucose (FBG), blood urea nitrogen (BUN) and serum creatinine (Scr), as well as 24-hour urine protein levels were effectively ameliorated in DN mice treated with PR (20, 40, 80mg/kg/day). Furthermore, PR treatment markedly resulted in down-regulation of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) in kidney. Interestingly, the activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) were increased by PR. An improvement in kidney tissue damage could be observed after PR administration. Further ultrastructural investigation revealed a dramatically ameliorative effect of PR on mitochondrial damage. Meanwhile, the silent information regulator 1 (SIRT1), forkhead box protein O1 (FOXO1) and alpha subunit of peroxisome proliferators-activated receptor-gamma coactivator-1 (PGC-1α) expressions were significantly up-regulated at protein level by PR administration in renal cortex. However, the protein expression of nuclear-factor kappa B (NF-κB) was down-regulated in PR groups. Our present study demonstrates the hypoglycemic and renal protective effects of PR in DN mice, which support its anti-diabetic property. PR exerts its renal protection effect probably via the mechanism of attenuating SIRT1/FOXO1 pathway for renal protection.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Isoflavonas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Pueraria/química , Animais , Glicemia/metabolismo , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Diabetes Mellitus Experimental , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/urina , Isoflavonas/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular
14.
Neurosci Lett ; 570: 63-8, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24747687

RESUMO

Yulangsan polysaccharide (YLSP) has been utilized as a phytomedicine to managing nervous dysfunction in China. Thus, this study aimed to evaluate the potential YLSP-mediated detoxification role against morphine dependence in rats. The results indicated that the morphine dependence model significantly increased withdrawal symptoms, levels of NO and NOS (P<0.05). Furthermore, monoaminergic neurotransmitters, including DA and NE, were detected at elevated levels in the ventral tegmental area (VTA), hippocampus (HIP) and prefrontal cortex (PFC), respectively, while the level of DA was decreased and NE was increased in the nucleus accumbens (NAc). Conversely, YLSP administration significantly reversed naloxone-induced withdrawal symptoms, expression of brain NO and NOS, and monoaminergic neurotransmitters (P<0.05). Interestingly, YLSP shows an even more effective trend in attenuating withdrawal symptoms than does clonidine, although without a significant difference. These findings indicate that YLSP attenuation of the naloxone-induced withdrawal symptoms of morphine dependence may be mediated by regulation of the NO pathway and modulation of monoaminergic neurotransmitters.


Assuntos
Dependência de Morfina/tratamento farmacológico , Morfina/efeitos adversos , Óxido Nítrico/metabolismo , Polissacarídeos/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dopamina/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Dependência de Morfina/metabolismo , Dependência de Morfina/fisiopatologia , Naloxona , Óxido Nítrico Sintase/metabolismo , Norepinefrina/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia
15.
J Ethnopharmacol ; 152(1): 201-6, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24412379

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yulangsan polysaccharide (YLSPS) is often used in popular folk medicine in the Guangxi Zhuang Autonomous Region of China as a chief ingredient of Millettia pulchra, which is used as an hepatic protection, anti-aging and memory improving agent. In this study, the hepatoprotective effects of YLSPS against isoniazid (INH) or rifampicin and isoniazid (RFP+INH)-induced liver injury were investigated in mice. MATERIALS AND METHODS: The liver injury was induced by intragastric administration of INH or RFP+INH daily for 10 days. During the experiment, the model group received INH or RFP+INH only, and the normal control group received an equal volume of saline. Treatment groups received not only INH or RFP+INH but also the corresponding drugs, DDB (200mg/kg/day) or YLSPS (100, 200, and 400mg/kg/day) 2h after the administration of INH or RFP+INH. RESULTS: Analysis experiments showed that YLSPS significantly alleviated liver injury as indicated by the decreased levels of ALT and AST and the increased levels of SOD, GSH and GSH-Px. Moreover, YLSPS could effectively reduce the pathological tissue damage. The research on the mechanisms underlying the hepatoprotective effect showed that YLSPS was able to reduce lipid peroxidation and activate the anti-oxidative defense system. CONCLUSION: Our results show that YLSPS is effective in attenuating hepatic injury in the INH or RFP+INH-induced mouse model, and could be developed as a new drug for treatment of liver injury.


Assuntos
Antituberculosos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Millettia/química , Polissacarídeos/farmacologia , Animais , Antioxidantes/metabolismo , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Isoniazida/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Polissacarídeos/administração & dosagem , Polissacarídeos/isolamento & purificação , Rifampina/toxicidade
16.
Gene ; 527(1): 115-22, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23774688

RESUMO

In the present study, we aimed to assess the potential anti-amblyopic effects of L-dopa methyl ester (LDME) on visual cortex area 17 in an amblyopic feline model induced by monocular vision deprivation. After LDME administration, pathophysiologic and ultrastructural observations were utilized to examine the morphological changes of nerve cells in visual cortex area 17. Dopamine (DA) and its metabolite contents in visual cortex area 17 were investigated through HPLC analysis. Apoptotic cells in visual cortex area 17 were evaluated by TUNEL assay. Additionally, the c-fos expression both at gene and protein levels was assessed using RT-PCR and immunohistochemistry analyses, respectively. The contents of DA and its metabolites were elevated in visual cortex area 17. Neuronal rejuvenation which occurred in visual cortex area 17 was observed through anatomical and physiological assessments. Similarly, TUNEL results showed that neuronal apoptosis was inhibited in the visual cortex of amblyopic cats by both L-dopa and LDME therapies. Meanwhile, the c-fos expression was notably up-regulated at both the mRNA and protein levels by the treatments. These findings suggested that LDME treatment could effectively increase DA and its metabolite contents, and restrain the apoptotic process, as well as elevate the c-fos expression in nerve cells of visual cortex area 17. Taken together, LDME might ameliorate the functional cytoarchitecture in visual cortex area 17 through mechanisms that elevate DA content and increase endogenous c-fos expression, as well as inhibit neuronal lesion in visual cortex tissue.


Assuntos
Ambliopia/tratamento farmacológico , Levodopa/análogos & derivados , Córtex Visual/efeitos dos fármacos , Ambliopia/metabolismo , Ambliopia/patologia , Animais , Apoptose/efeitos dos fármacos , Gatos , Dopamina/metabolismo , Expressão Gênica/efeitos dos fármacos , Levodopa/administração & dosagem , Neurônios/metabolismo , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Regulação para Cima/efeitos dos fármacos , Córtex Visual/metabolismo , Córtex Visual/patologia
17.
Biol Pharm Bull ; 35(9): 1574-80, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22975511

RESUMO

This study was designed to investigate the protective effects of the polysaccharide isolated from Tarphochlamys affinis (PTA) against CCl4-induced hepatotoxicity in rats. Liver injury was induced in rats by the administration of CCl4 twice a week for 2 weeks. During the experiment, the model group received CCl4 only; the treatment groups received various drugs plus CCl4, whereas the normal control group received an equal volume of saline. Compared with the CCl4 group, PTA significantly decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in the serum and increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) in the liver. Moreover, the content of hepatic malondialdehyde (MDA) was reduced. Histological findings also confirmed the anti-hepatotoxic characterisation. In addition, PTA significantly inhibited the proinflammatory mediators, such as prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and myeloperoxidase (MPO). Further investigation showed that the inhibitory effect of PTA on the pro-inflammatory cytokines was associated with the down-regulation of nuclear factor-kappa B (NF-κB). In brief, our results show that the protective effect of PTA against CCl4-induced hepatic injury may rely on its ability to reduce oxidative stress and suppress inflammatory responses.


Assuntos
Acanthaceae/química , Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/uso terapêutico , Polissacarídeos/uso terapêutico , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Aspartato Aminotransferases/sangue , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/metabolismo , Regulação para Baixo , Glutationa Peroxidase/metabolismo , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
18.
J Ethnopharmacol ; 142(2): 548-56, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22658988

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chinese prescription Fufang-Liu-Yue-Qing (FLYQ) has long been employed clinically to treat chronic hepatitis B, and we have reported its beneficial effects on liver fibrosis in vitro. The present study was investigated to verify protective effects of FLYQ on liver fibrosis in a rat model and to investigate the underlying mechanisms which have not been explored yet. MATERIALS AND METHODS: Liver fibrosis was established by intragastric administration of 2 ml/kg CCl(4) twice a week for 12 weeks. During the experiment, the model group received CCl(4) only, and the normal control group received an equal volume of saline. Treatment groups received not only CCl(4) for 12 weeks, but also the corresponding drugs, colchicine (1.00 mg/kg/day) or FLYQ (300, 150, 75 mg/kg/day) from 5 to 12 weeks. RESULTS: Analysis experiments showed that FLYQ could significantly alleviate liver injury, as indicated by decreasing levels of ALT, AST, ALP, GGT, IL-6 and TNF-α. Moreover, FLYQ could effectively inhibit collagen deposition and reduce the pathological tissue damage. Research on mechanism showed that FLYQ was able to markedly reduce lipid peroxidation, recruit the anti-oxidative defense system, promote ECM degradation by modulating the levels of TIMP-1 and MMP-2, and induce HSC apoptosis by down-regulating bcl-2 mRNA, as well as inhibit the expressions of α-SMA and TGF-ß(1) proteins. CONCLUSIONS: Our results show that FLYQ is effective in attenuating hepatic injury and fibrosis in the CCl(4)-induced rat model, which should be developed as a new drug for treatment of liver fibrosis and even cirrhosis.


Assuntos
Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Cirrose Hepática Experimental/tratamento farmacológico , Fígado/efeitos dos fármacos , Magnoliopsida , Fitoterapia , Actinas/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colchicina , Colágeno/metabolismo , Regulação para Baixo , Medicamentos de Ervas Chinesas/farmacologia , Interleucina-6/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Transaminases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Food Chem Toxicol ; 50(9): 3142-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22727860

RESUMO

This study examined the effects and possible mechanisms of rifampin against acetaminophen-induced hepatotoxicity in mice. Rifampin significantly enhanced the biotransformation of acetaminophen, evidenced by the increase in p-aminophenol formation in rifampin-treated microsomes and the increase in plasma clearance rate of acetaminophen. Pretreatment with rifampin significantly decreased serum alanine transaminase (ALT) activities, aspartate transaminase (AST) activities and prevented severe liver necrosis following acetaminophen overdose. The contents and activities of microsomal drug-metabolizing enzyme were less affected in rifampin-pretreated mice in comparison to the animals treated with acetaminophen alone. Rifampin was capable of increasing glutathione (GSH) level and GSH reductase activity and reducing GSH depletion and the decrease in GSH reductase activity by acetaminophen in mice. In addition, it was found that the microsomal Ca(2+)-ATPase activity was not directly related to acetaminophen toxic species generated in the P450 enzyme system in vitro. These findings suggest that rifampin has species-specific effects on the liver against acetaminophen-induced hepatotoxicity in mice, which increase the level of GSH by promoting GSH regeneration.


Assuntos
Acetaminofen/toxicidade , Microssomos Hepáticos/efeitos dos fármacos , Rifampina/farmacologia , Animais , Sinergismo Farmacológico , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microssomos Hepáticos/enzimologia
20.
Biochem Biophys Res Commun ; 418(4): 622-7, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22281498

RESUMO

Dengue virus (DENV) capsid (C) proteins are the major structural component of virus particles. This study aimed to identify the host interacting partners of DENV C protein that could contribute to viral pathogenesis. DENV C protein was screened against human liver cDNA yeast two-hybrid library. We identified calcium modulating cyclophilin-binding ligand (CAML) as a novel interacting partner of DENV C protein. We report for the first time that CAML influenced DENV production. DENV production was significantly attenuated in CAML knock-down cells at 36h post-infection. CAML did not influence DENV entry, genome uncoating, viral transcription, viral translation and virus secretion. Our study pinpointed that CAML influenced the process of apoptosis by altering mitochondrial membrane potential and caspase-3 activation from 36h post-infection. Over-expression of CAML protected Huh7 cells from apoptosis and knock down of CAML favoured apoptosis following infection with DENV. We also showed that CAML expression was up-regulated during DENV infection. Increased CAML levels protected DENV-infected cells from undergoing apoptosis by preventing mitochondrial damage and caspase-3 activation which in turn favoured DENV production from 36h post-infection. Overall, this study demonstrated that DENV manipulated the levels of CAML to subvert the apoptotic process which in turn favoured efficient virus production.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Cálcio/metabolismo , Vírus da Dengue/fisiologia , Dengue/metabolismo , Replicação Viral , Proteínas do Capsídeo/metabolismo , Ciclo Celular , Linhagem Celular , Dengue/virologia , Vírus da Dengue/metabolismo , Interações Hospedeiro-Patógeno , Humanos , RNA Viral/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA