Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
BMC Vet Res ; 20(1): 157, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664826

RESUMO

BACKGROUND: Bactrian camel is one of the important economic animals in northwest China. They live in arid desert, and their gestation period is about 13 months, which is longer than other ruminants (such as cattle and sheep). The harsh living conditions have made its unique histological characteristics a research focus. Aggregated lymphoid nodules area (ALNA) in the abomasum of Bactrian camels, as one of the most important sites for the induction of the immune response, provide a comprehensive and effective protective role for the organism, and their lack of information will affect the feeding management, reproduction and epidemic prevention of Bactrian camels. In this study, the histological characteristics of the fetal ALNA in the abomasum of Bactrian camels at different developmental gestation have been described by using light microscopy and histology . RESULTS: The ALNA in the abomasum of the Chinese Alashan Bactrian camel is a special immune structure that was first discovered and reported by Wen-hui Wang. To further establish the developmental characteristics of this special structure in the embryonic stage, the abomasum ALNA of 8 fetuses of Alashan Bactrian camels with different gestational ages (5~13 months) were observed and studied by anatomy and histology. The results showed that the aggregation of reticular epithelial cells (RECs) surrounded by a very small number of lymphoid cells was detected for the first time in the abomasum of fetal camel at 5 months gestation, which was presumed to be primitive ALNA. At 7 months gestation, the reticular mucosal folds region (RMFR) appeared, but the longitudinal mucosal folds region (LMFR) was not significant, and histological observations showed that there were diffusely distributed lymphocytes around the RECs. At 10months gestation, RMFR and LMFR were clearly visible, lymphoid follicles appeared in histological observation, lymphocytes proliferated vigorously. By 13 months, the volume of lymphoid follicles increased, forming the subepithelial dome (SED), and there was a primitive interfollicular area between the lymphoid follicles, which contained high endothelial vein (HEV), but no germinal center (GC) was found. In summary, ALNA of Bactrian camels is not fully mature before birth. CONCLUSIONS: Generally, the small intestine PPs of ruminants (such as cattle and sheep) is already mature before birth, while the ALNA in the abomasum of Bactrian camels is not yet mature in the fetal period. During the development of ALNA in Bactrian camel, the development of lymphoid follicles extends from submucosa to Lamina propria. Interestingly, the deformation of FAE changes with age from simple columnar epithelium at the beginning of pregnancy to Simple cuboidal epithelium, which is opposite to the FAE deformation characteristics of PPs in the small intestine of fetal cattle and sheep. These results are the basis of further research on the specificity of ALNA in the abomasum of Bactrian camels.


Assuntos
Abomaso , Camelus , Animais , Camelus/anatomia & histologia , Camelus/embriologia , Feminino , Tecido Linfoide/anatomia & histologia , Tecido Linfoide/crescimento & desenvolvimento , Feto , Gravidez
2.
Eur Respir Rev ; 33(171)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38537947

RESUMO

COPD poses a significant global public health challenge, primarily characterised by irreversible airflow restriction and persistent respiratory symptoms. The hallmark pathology of COPD includes sustained airway inflammation and the eventual destruction of lung tissue structure. While multiple risk factors are implicated in the disease's progression, the underlying mechanisms remain largely elusive. The perpetuation of inflammation is pivotal to the advancement of COPD, emphasising the importance of investigating these self-sustaining mechanisms for a deeper understanding of the pathogenesis. Autoimmune responses constitute a critical mechanism in maintaining inflammation, with burgeoning evidence pointing to their central role in COPD progression; yet, the intricacies of these mechanisms remain inadequately defined. This review elaborates on the evidence supporting the presence of autoimmune processes in COPD and examines the potential mechanisms through which autoimmune responses may drive the chronic inflammation characteristic of the disease. Moreover, we attempt to interpret the clinical manifestations of COPD through autoimmunity.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Autoimunidade , Pulmão/patologia , Fatores de Risco , Inflamação
3.
World J Gastrointest Oncol ; 15(11): 1951-1973, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077636

RESUMO

BACKGROUND: Tumor recurrence and metastasis lead to a poor prognosis in colorectal cancer (CRC). Necroptosis is closely related to the tumor microenvironment (TME) and affects tumor recurrence and metastasis. We aimed to stratify CRC patients according to necroptosis-related long noncoding RNAs (lncRNAs), which can be used to not only evaluate prognosis and improve precision medicine in clinical practice but also screen potential immunotherapy drugs. AIM: To stratify CRC patients according to necroptosis-related lncRNAs (NRLs), which can be used to not only evaluate prognosis and improve precision medicine in clinical practice but also screen potential immunotherapy drugs. METHODS: LncRNA expression profiles were collected from The Cancer Genome Atlas. NRLs were identified by coexpression analysis. Cox regression analysis identified a NRL signature. Then, the value of this signature was comprehensively and multidimensionally evaluated, and its reliability for CRC prognosis prediction was assessed with clinical CRC data and compared with that of six other lncRNA signatures. Gene set enrichment analysis, TME analysis and half-maximal inhibitory concentration (IC50) prediction were also performed according to the risk score (RS) of the signature. RESULTS: An 8-lncRNA signature significantly associated with overall survival (OS) was constructed, and its reliability was validated with clinical CRC data. Most of the areas under the receiver operating characteristic curves (AUCs) values for 1-, 3- and 5-year OS for this signature were higher than those for the other six lncRNA signatures. OS, disease-specific survival and the progression-free interval were all significantly poorer in the high-risk group. The RS of the signature showed good concordance with the predicted prognosis, with AUCs for 1-, 3- and 5-year OS of 0.79, 0.81 and 0.77, respectively. Additionally, the calibration plots for this signature combined with clinical factors showed that this combination could effectively improve the ability to predict OS. The RS was correlated with tumor stage, lymph node metastasis and distant metastasis. Most of the enriched Kyoto Encyclopedia of Genes and Genomes and Gene Ontology terms were tumor metastasis-related pathways in the high-risk group; these patients showed greater infiltration of immunosuppressive cells, such as cancer-associated fibroblasts, hematopoietic stem cells and M2 macrophages, but less infiltration of infiltrating antitumor effector immune cells, such as cluster of differentiation 8+ T cells and regulatory T cells (Tregs). We explored additional potential immune checkpoint genes and potential immunotherapeutic and chemotherapeutic drugs with relatively low IC50 values. CONCLUSION: We identified an NRL signature with strong fidelity that could stably predict prognosis and might be an indicator of the TME of CRC. Furthermore, additional potential immunotherapeutic and chemotherapeutic drugs were explored.

4.
J Inflamm Res ; 16: 5715-5728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053607

RESUMO

Purpose: This study aimed to explore the effect of Rapamycin (Rapa) in Staphylococcus aureus (S. aureus) pneumonia and clarify its possible mechanism. Methods: We investigated the effects of Rapa on S. aureus pneumonia in mouse models and in macrophages cultured in vitro. Two possible mechanisms were investigated: the mTOR-RPS6 pathway phosphorylation and phagocytosis. Furthermore, for the mechanism verification in vivo, mice with specific Mtor knockout in myeloid cells were constructed for pneumonia models. Results: Rapa exacerbated S. aureus pneumonia in mouse models, promoting chemokines secretion and inflammatory cells infiltration in lung. In vitro, Rapa upregulated the secretion of chemokines and cytokines in macrophages induced by S. aureus. Mechanistically, the mTOR-ribosomal protein S6 (RPS6) pathway in macrophages was phosphorylated in response to S. aureus infection, and the inhibition of RPS6 phosphorylation upregulated the inflammation level. However, Rapa did not increase the phagocytic activity. Accordingly, mice with specific Mtor knockout in myeloid cells experienced more severe S. aureus pneumonia. Conclusion: Rapa exacerbates S. aureus pneumonia by increasing the inflammatory levels of macrophages. Inhibition of mTOR-RPS6 pathway upregulates the expression of cytokines and chemokines in macrophages, thus increases inflammatory cells infiltration and exacerbates tissue damage.

5.
Inorg Chem ; 62(45): 18331-18337, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37910803

RESUMO

Here, two isomeric ionic zero-dimensional indium bromide crystals of α (1)/ß (2)-[OPy][InBr4(Phen)] (OPy = N-octylpyridinium; Phen = 1,10-phenanthroline) have been isolated simply by changing the cooling conditions in solvothermal syntheses. Structural comparisons indicate their different supramolecular interactions, which can be confirmed by Hirshfeld surface analyses. The crystal 2 has additional hydrogen bonds and π-π interactions; as a result, the more compact stacking of 2 could result in a 10-fold higher photoluminescence (PL) quantum yield (PLQY) than that of 1. Density functional theory calculations confirm the electron transition from the inorganic moiety to the organic ligand, which provides a further understanding of the optical process. This work provides a new idea for designing PL indium-based halides by understanding the structure-PL relationship.

6.
BMC Pulm Med ; 23(1): 258, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452319

RESUMO

BACKGROUND: Neutrophils consume a large amount of energy when performing their functions. Compared with other white blood cells, neutrophils contain few mitochondria and mainly rely on glycolysis and gluconeogenesis to produce ATP. The inflammatory site is hypoxic and nutrient poor. Our aim is to study the role of abnormal adenosine metabolism of neutrophils in the asthmatic airway inflammation microenvironment. METHOD: In this study, an asthma model was established by intratracheal instillation of Aspergillus fumigatus extract in Ecto-5'-Nucleotidase (CD73) gene-knockout and wild-type mice. Multiple analyses from bronchoalveolar lavage fluid (BALF) were used to determine the levels of cytokines and chemokines. Immunohistochemistry was used to detect subcutaneous fibrosis and inflammatory cell infiltration. Finally, adenosine 5'-(α, ß-methylene) diphosphate (APCP), a CD73 inhibitor, was pumped subcutaneously before Aspergillus attack to observe the infiltration of inflammatory cells and subcutaneous fibrosis to clarify its therapeutic effect. RESULT: PAS staining showed that CD73 knockout inhibited pulmonary epithelial cell proliferation and bronchial fibrosis induced by Aspergillus extract. The genetic knockdownof CD73 significantly reduced the production of Th2 cytokines, interleukin (IL)-4, IL-6, IL-13, chemokine (C-C motif) ligand 5 (CCL5), eosinophil chemokine, neutrophil IL-17, and granulocyte colony-stimulating factor (G-CSF). In addition, exogenous adenosine supplementation increased airway inflammation. Finally, the CD73 inhibitor APCP was administered to reduce inflammation and subcutaneous fibrosis. CONCLUSION: Elevated adenosine metabolism plays an inflammatory role in asthma, and CD73 could be a potential therapeutic target for asthma.


Assuntos
Asma , Neutrófilos , Animais , Camundongos , Neutrófilos/metabolismo , Aspergillus fumigatus/metabolismo , Adenosina/metabolismo , Asma/terapia , Citocinas/metabolismo , Inflamação , Quimiocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Extratos Vegetais , Remodelação das Vias Aéreas
7.
Opt Express ; 31(5): 7994-8004, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859918

RESUMO

We propose a scheme to realize robust optical entanglement in cavity optomagnonics, where two optical whispering gallery modes (WGMs) couple to a magnon mode in a yttrium iron garnet (YIG) sphere. The beam-splitter-like and two-mode squeezing magnon-photon interactions can be realized simultaneously when the two optical WGMs are driven by external fields. Entanglement between the two optical modes is then generated via their coupling with magnons. By exploiting the destructive quantum interference between the bright modes of the interface, the effects of initial thermal occupations of magnons can be eliminated. Moreover, the excitation of the Bogoliubov dark mode is capable of protecting the optical entanglement from thermal heating effects. Therefore, the generated optical entanglement is robust against thermal noise and the requirement of cooling the magnon mode is relaxed. Our scheme may find applications in the study of magnon-based quantum information processing.

8.
PLoS One ; 18(3): e0279417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36947571

RESUMO

Gastrointestinal associated lymphoid tissue (GALT) is an important component of the mucosal immune system. It is the largest mass of lymphoid tissues in the body and makes up more than 70% immune cells of entire body. GALT is considered to be the origin of systemic mucosal immunity and consists of solitary lymphoid nodules, aggregated lymphoid nodules (Peyer's patches, PPs), scattered lymphoid tissues, and follicular associated epithelia. PPs play important roles as antigen inductive sites of the mucosal immune system, which are mainly distributed in the intestine of animals and humans (especially ileum and appendix). However, a special area of well-developed aggregated lymphoid nodules in the abomasum of Dromedary camel was found in our laboratory. Its existence was rarely described in the stomach before. In the present study, we investigated this special structure with the dromedary camels of different ages (young, 0.5-2 years; pubertal, 3-5 years; middle-aged, 6-16 years; old, 17-20 years), by the anatomical, histological and immunohistochemical approaches. The results showed that the special structure was mainly distributed in the cardiac glandular area of the abomasum, forming a triangular area. The mucosal folds in this area were significantly thicker than those in the surrounding region. These mucosal folds had two different forms, namely reticular mucosal folds (RMF) and longitudinal mucosal folds (LMF). There were abundant lymphoid nodules in the submucosa of RMF and LMF, which were arranged in one or multiple rows. The statistical analysis of the height and thickness of RMF and LMF showed that the structure was most developed in pubertal dromedary camels. The histological characteristics of the structure were the same as PPs in the intestine of the Dromedary camel, while anatomical appearance showed some difference. The immunohistochemical examination revealed that both immunoglobulin A (IgA) and G (IgG) antibodies-producing cells (APCs) were extensively distributed in the gastric lamina propria (LP) in all age group. Our finding suggest that camel stomach not only performs digestive functions, but also involves parts of body immunity.


Assuntos
Camelus , Estômago , Animais , Humanos , Pessoa de Meia-Idade , Tecido Linfoide , Mucosa Gástrica , Abomaso
9.
Cell Discov ; 8(1): 44, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35570218

RESUMO

Chemokine receptors are a family of G-protein-coupled receptors with key roles in leukocyte migration and inflammatory responses. Here, we present cryo-electron microscopy structures of two human CC chemokine receptor-G-protein complexes: CCR2 bound to its endogenous ligand CCL2, and CCR3 in the apo state. The structure of the CCL2-CCR2-G-protein complex reveals that CCL2 inserts deeply into the extracellular half of the transmembrane domain, and forms substantial interactions with the receptor through the most N-terminal glutamine. Extensive hydrophobic and polar interactions are present between both two chemokine receptors and the Gα-protein, contributing to the constitutive activity of these receptors. Notably, complemented with functional experiments, the interactions around intracellular loop 2 of the receptors are found to be conserved and play a more critical role in G-protein activation than those around intracellular loop 3. Together, our findings provide structural insights into chemokine recognition and receptor activation, shedding lights on drug design targeting chemokine receptors.

10.
Front Immunol ; 13: 810824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309308

RESUMO

Major histocompatibility complex class II (MHC II) is an essential immune regulatory molecule that plays an important role in antigen presentation and T-cell development. Abnormal MHC II expression can lead to immunodeficiency, clinically termed as type II bare lymphocyte syndrome (BLS), which usually results from mutations in the MHC II transactivator (CIITA) and other coactivators. Here, we present a new paradigm for MHC II deficiency in mice that involves a spontaneous point mutation on H2-Aa. A significantly reduced population of CD4+ T cells was observed in mice obtained from the long-term homozygous breeding of autophagy-related gene microtubule-associated protein 1 light chain 3 ß (Map1lc3b, Lc3b) knockout mice; this phenotype was not attributed to the original knocked-out gene. MHC II expression was generally reduced, together with a marked deficiency of H2-Aa in the immune cells of these mice. Using cDNA and DNA sequencing, a spontaneous H2-Aa point mutation that led to false pre-mRNA splicing, deletion of eight bases in the mRNA, and protein frameshift was identified in these mice. These findings led to the discovery of a new type of spontaneous MHC II deficiency and provided a new paradigm to explain type II BLS in mice.


Assuntos
Antígenos de Histocompatibilidade Classe II , Mutação Puntual , Animais , Linfócitos T CD4-Positivos , Camundongos , Camundongos Knockout , Imunodeficiência Combinada Severa , Linfócitos T
11.
PLoS One ; 17(3): e0264815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35245335

RESUMO

Polymeric immunoglobulin receptor (pIgR), the transmembrane transporter of polymeric immunoglobulin A and M, has multiple immune functions. To explore the characteristics of pIgR expression in Bactrian camel lungs, twelve healthy adult (2-7 years old) Bactrian camels were systematically studied. The results showed that pIgR was mainly expressed in the cytoplasm and membrane of ciliated cells, as well as in the cytoplasm and membrane of basal cells, serous cells of bronchial glands, club cells and alveolar type 2 cells in Bactrian camel lungs. Specially, as the bronchial branches extended, the pIgR expression level in ciliated cells significantly declined (p<0.05), and the corresponding bronchial luminal areas obviously decreased (p<0.05). However, pIgR was not expressed in goblet cells, endocrine cells, alveolar type 1 cells and mucous cells of bronchial glands. The results demonstrated that ciliated cells continuously distributed throughout the whole bronchial tree mucosa were the major expression sites of pIgR, and pIgR was also expressed in basal cells, serous cells of bronchial glands, club cells and alveolar type 2 cells, which would facilitate secretory immunoglobulin A (SIgA) transmembrane transport by pIgR and form an intact protective barrier. Moreover, the pIgR expression level in ciliated cells was positively correlated with the bronchial luminal areas; but negatively correlated with the cleanliness of airflow through the bronchial cross-sections, showing that the pIgR expression level in the bronchial epithelium was inhomogeneous. Our study provided a foundation for further exploring the regulatory functions of immunoglobulins (i.e., SIgA) after transport across the membrane by pIgR in Bactrian camel lungs.


Assuntos
Receptores de Imunoglobulina Polimérica , Animais , Brônquios/metabolismo , Camelus/fisiologia , Imunoglobulina A/metabolismo , Imunoglobulina A Secretora , Receptores de Imunoglobulina Polimérica/genética
12.
J Colloid Interface Sci ; 616: 81-92, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189506

RESUMO

Although photodynamic therapy (PDT) has been extensively studied as an established modality of cancer treatment, it still suffers from a few clinical limitations, such as skin phototoxicity and tumor hypoxia. To circumvent these hurdles, hollow silica mesoporous nanoparticles (HMSNs) loaded with photosensitizers were employed as the nanoplatform to construct multifunctional nanoparticles (NPs). Specifically, an ultra-uniform polydopamine (PDA) shell was highly controlled grown around HMSNs by photogenerated outwards-diffused 1O2, followed by conjugation of folic acid-poly(ethylene glycol) and chelation of Fe2+ ions. Thanks to the optimal thickness of light-absorbing PDA shell, the multifunctional NPs exhibited not only negligible skin phototoxicity but also efficient 1O2 generation and photothermal (PT)-enhanced •OH generation upon respective photoirradiation. Anti-tumor therapy was then performed on both 4 T1 tumor cells and tumor-bearing mice by the combination of 638 nm PDT and 808 nm PT-enhanced chemodynamic therapy (CDT). As a result, high therapeutic efficacy was achieved compared to single-modality therapy, with a cell inhibitory rate of 86% and tumor growth inhibition of 70.4% respectively. More interestingly, tumor metastasis was effectively inhibited by the synergetic treatment. These results convincingly demonstrate that our multifunctional NPs are very promising skin-safe PDT agents combined with CDT for efficient tumor therapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros/uso terapêutico , Dióxido de Silício/uso terapêutico
13.
Nat Chem Biol ; 18(3): 264-271, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34949837

RESUMO

Biased signaling of G protein-coupled receptors describes an ability of different ligands that preferentially activate an alternative downstream signaling pathway. In this work, we identified and characterized different N-terminal truncations of endogenous chemokine CCL15 as balanced or biased agonists targeting CCR1, and presented three cryogenic-electron microscopy structures of the CCR1-Gi complex in the ligand-free form or bound to different CCL15 truncations with a resolution of 2.6-2.9 Å, illustrating the structural basis of natural biased signaling that initiates an inflammation response. Complemented with pharmacological and computational studies, these structures revealed it was the conformational change of Tyr291 (Y2917.43) in CCR1 that triggered its polar network rearrangement in the orthosteric binding pocket and allosterically regulated the activation of ß-arrestin signaling. Our structure of CCL15-bound CCR1 also exhibited a critical site for ligand binding distinct from many other chemokine-receptor complexes, providing new insights into the mode of chemokine recognition.


Assuntos
Proteínas de Ligação ao GTP , Receptores de Quimiocinas , Quimiocinas/metabolismo , Quimiocinas/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Receptores de Quimiocinas/agonistas , Receptores de Quimiocinas/metabolismo , beta-Arrestinas/metabolismo
15.
Cell Immunol ; 364: 104341, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798909

RESUMO

Asthma is a chronic inflammatory disease of the lungs that poses a considerable health and socioeconomic burden. Several risk factors work synergistically to affect the progression of asthma. Lipid metabolism, especially in distinct cells such as T cells, macrophages, granulocytes, and non-immune cells, plays an essential role in the pathogenesis of asthma, as lipids are potent signaling molecules that regulate a multitude of cellular response. In this review, we focused on the metabolic pathways of lipid molecules, especially fatty acids and their derivatives, and summarized their roles in various cells during the pathogenesis of asthma along with the current pharmacological agents targeting lipid metabolism.


Assuntos
Asma/metabolismo , Granulócitos/imunologia , Metabolismo dos Lipídeos/imunologia , Macrófagos/imunologia , Linfócitos T/imunologia , Animais , Asma/tratamento farmacológico , Asma/epidemiologia , Ácidos Graxos/metabolismo , Humanos , Imunidade Celular , Terapia de Alvo Molecular , Fatores de Risco , Transdução de Sinais
16.
Front Immunol ; 12: 594330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828547

RESUMO

Cigarette smoke (CS)-induced macrophage activation and airway epithelial injury are both critical for the development of chronic obstructive pulmonary disease (COPD), while the eventual functions of autophagy in these processes remain controversial. We have recently developed a novel COPD mouse model which is based on the autoimmune response sensitized by CS and facilitated by elastin. In the current study, we therefore utilized this model to investigate the roles of autophagy in different stages of the development of bronchitis-like airway inflammation. Autophagic markers were increased in airway epithelium and lung tissues, and Becn+/- or Lc3b-/- mice exhibited reduced neutrophilic airway inflammation and mucus hyperproduction in this COPD mouse model. Moreover, treatment of an autophagic inhibitor 3-methyladenine (3-MA) either during CS-initiated sensitization or during elastin provocation significantly inhibited the bronchitis-like phenotypes in mice. Short CS exposure rapidly induced expression of matrix metallopeptidase 12 (MMP12) in alveolar macrophages, and treatment of doxycycline, a pan metalloproteinase inhibitor, during CS exposure effectively attenuated the ensuing elastin-induced airway inflammation in mice. CS extract triggered MMP12 expression in cultured macrophages, which was attenuated by autophagy impairment (Becn+/- or Lc3b-/-) or inhibition (3-MA or Spautin-1). These data, taken together, demonstrate that autophagy mediates both the CS-initiated MMP12 activation in macrophages and subsequent airway epithelial injury, eventually contributing to development COPD-like airway inflammation. This study reemphasizes that inhibition of autophagy as a novel therapeutic strategy for CS-induced COPD.


Assuntos
Autofagia , Bronquite/etiologia , Bronquite/metabolismo , Elastina/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Biomarcadores , Bronquite/patologia , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças , Elastina/genética , Expressão Gênica , Humanos , Imuno-Histoquímica , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Camundongos
17.
Huan Jing Ke Xue ; 42(2): 653-662, 2021 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742859

RESUMO

Cadmium (Cd) pollution poses a threat to human health, and research on Cd bioavailability as well as its ecological risk assessment can help prevent and mitigate Cd hazards. The enrichment characteristics and variability of Cd were investigated in sea-land interaction soil fractions and the associated environmental and ecological risks were evaluated using the accumulation index (Igeo), potential ecological hazard index (Er), and risk assessment coding (RAC). The results showed that:① The Cd content of miscellaneous fill material was typically lower than 0.3 mg·kg-1 and that of plain full was higher than 0.3 mg·kg-1. The Cd content of marine sediment was significantly higher than that of continental sediments, averaging 0.36 and 0.10 mg·kg-1, respectively. The concentration of Cd in marine sediments buried at shallow depths (<5 m) was generally higher than at greater depths (>5 m). ② There was a moderate correlation between Cd and CEC in artificial fill (Q4ml; correlation coefficient=0.52, P<0.05). There was a weak correlation between Cd and organic matter in the marine sediments (correlation coefficient=0.49, P<0.05). Total cadmium and the physical and chemical properties of soil had a significant influence on the fraction of soil cadmium. ③ The Igeo of artificially fill and marine sediment was dominated by the relationship 1 < Igeo < 2, which indicated a moderate level of pollution. The Er of artificial fill and marine sediment was mainly 80 < Er < 160, indicating a high potential ecological hazard. Soil acid-extractable Cd accounted for more than 50% of the total Cd in each drill hole, which generally indicated a very high potential ecological risk. These results provide a basis for environmental and agricultural decision-making and provide theoretical guidance for soil pollution investigations and remediation.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Disponibilidade Biológica , Cádmio/análise , China , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Metais Pesados/análise , Medição de Risco , Rios , Solo , Poluentes Químicos da Água/análise
18.
Zhongguo Zhong Yao Za Zhi ; 46(4): 944-950, 2021 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-33645101

RESUMO

Two new sucrose cinnamates(1 and 2) along with nine known compounds(3-11) were isolated from ethanol extract of Polygonum lapathifolium var. salicifolium by silica gel column chromatography, ODS column chromatography and semi-preparative HPLC. Their structures were elucidated by extensive spectroscopic methods including 1 D-and 2 D-NMR experiments, as well as HR-ESI-MS analysis. Eleven compounds(7 sucrose cinnamates, 3 phenylpropanoids and 1 lactone) were obtained and their structures were identified as(1,3-O-di-p-coumaroyl)-ß-D-fructofuranosyl-(2→1)-α-D-glucopyranoside(1),(1,3-O-di-p-coumaroyl)-ß-D-fructofuranosyl-(2→1)-(6-O-acetyl)-α-D-glucopyranoside(2),(3-O-feruloyl)-ß-D-fructofuranosyl-(2→1)-(6-O-p-coumaroyl)-α-D-glucopyranoside(3), hydropiperoside(4), vanicoside C(5),(1,3-O-di-p-coumaroyl)-ß-D-fructofuranosyl-(2→1)-(6-O-feruloyl)-α-D-glucopyranoside(6), vanicoside B(7),trans-p-hydroxycinnamic acid methyl ester(8), trans-p-hydroxycinnamic acid ethyl ester(9), methyl ferulate(10) and dimethoxydimethylphthalide(11), respectively. Compounds 1 and 2 were two new sucrose cinnamates, and compounds 1-11 were isolated from this plant for the first time. The antioxidant activities of the isolated compounds 1-9 were investigated by an oxygen radical absorbance capacity(ORAC) assay, and all nine compounds were found to show strong antioxidant activities. Among them, compound 6(10 µmol·L~(-1)) was the supreme one in antioxidant activities, with its ORAC value equivalent to(1.60±0.05) times of 50 µmol·L~(-1) Trolox.


Assuntos
Polygonum , Antioxidantes , Cinamatos , Ésteres , Estrutura Molecular , Sacarose
19.
Huan Jing Ke Xue ; 41(10): 4581-4589, 2020 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124390

RESUMO

Cadmium pollution poses a threat to human health. The examination of spatial distribution of Cd in soils can be used to assess the risks posed to humans and the environment. The enrichment characteristics and variation rules of heavy metal cadmium in the soil were revealed by analyzing the concentration and fractions of Cd in the soil at different depths in the sea-land interaction zone. The results showed that: ① the concentration of Cd in the surface water of Nansha was lower than 0.0001 mg ·L-1, and the physical and chemical properties of river sediments showed spatial differences with the boundary of "Shang Heng-li River". Cd was mainly deposited in the north of the "Shang Heng-li River", with the mean total Cd of 2.71 mg ·kg-1. The total Cd in the sediment of the "Shang Heng-li River" and the rivers south of it were 0.062-0.39 mg ·kg-1, which caused minimal harm to the marine environment. ② The content of Cd in the soil profile gradually decreased with an increase in soil burial depth. The median content of Cd in the five layers, including 0-20 cm, 20-50 cm, 50-90 cm, 90-140 cm, and 140-200 cm, were 0.51, 0.50, 0.45, 0.42, and 0.33 mg ·kg-1, respectively, and the dispersion degree gradually decreased with an increase in buried depth; the vertical migration amount and migration depth of Cd increased significantly in soils with pH less than 5. ③ The residual Cd in the soil accounted for approximately 40%, and the trend was typically flat with a change in buried depth. The median proportion of acid soluble Cd was consistent with the change in pH and increased with an increase in the buried depth of the profile, while the median proportion of reducible Cd was consistent with the change in iron and manganese content, and decreased with an increase in buried depth of section. These results have important guiding significance for the regional prevention and control of Cd pollution in farmland surrounding cities and the treatment and remediation of polluted soil.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , China , Cidades , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Metais Pesados/análise , Rios , Solo , Poluentes do Solo/análise
20.
Sheng Li Xue Bao ; 72(5): 575-585, 2020 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-33106828

RESUMO

Ferroptosis is a novel form of regulated cell death which is dependent on iron and reactive oxygen species (ROS) and associated with the accumulation of lipid peroxides. It is obviously different from other cell death types in terms of morphology, biochemistry, genetics, etc. Also, it is related to the production of iron catalyzed lipid peroxides which is triggered by non-enzymatic or enzymatic reactions. Ferroptosis has been proved to be involved in hematological diseases, cardio-cerebrovascular diseases, liver and kidney diseases. This paper will review the definition, mechanism, inducers of ferroptosis, as well as the function of ferroptosis in respiratory system. We expect to present a new concept for respiratory research and suggest potential targets for clinical prevention and treatment of respiratory diseases.


Assuntos
Ferroptose , Transtornos Respiratórios , Morte Celular , Humanos , Ferro , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...