Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Nat Commun ; 15(1): 3933, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730243

RESUMO

As a strategy to improve the therapeutic success of chimeric antigen receptor T cells (CART) directed against solid tumors, we here test the combinatorial use of CART and IMSA101, a newly developed stimulator of interferon genes (STING) agonist. In two syngeneic tumor models, improved overall survival is observed when mice are treated with intratumorally administered IMSA101 in addition to intravenous CART infusion. Transcriptomic analyses of CART isolated from tumors show elevated T cell activation, as well as upregulated cytokine pathway signatures, in particular IL-18, in the combination treatment group. Also, higher levels of IL-18 in serum and tumor are detected with IMSA101 treatment. Consistent with this, the use of IL-18 receptor negative CART impair anti-tumor responses in mice receiving combination treatment. In summary, we find that IMSA101 enhances CART function which is facilitated through STING agonist-induced IL-18 secretion.


Assuntos
Interleucina-18 , Proteínas de Membrana , Receptores de Antígenos Quiméricos , Animais , Interleucina-18/metabolismo , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Humanos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Feminino , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico
2.
PeerJ ; 12: e17154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560472

RESUMO

This study aimed to investigate the clinical viability of utilizing the flexor hallucis brevis as an alternative site for neuromuscular monitoring compared to the conventional adductor pollicis. Patients were recruited from three medical centers. Cis-atracurium was administered, and two monitors were employed independently to assess neuromuscular blockade of the adductor pollicis and the ipsilateral flexor hallucis brevis, following a train of four (TOF) pattern until TOF ratios exceeded 0.9 or until the conclusion of surgery. Statistical analysis revealed significant differences in onset time, duration of no-twitch response, spontaneous recovery time, and total monitoring time between the two sites, with mean differences of -53.54 s, -2.49, 3.22, and 5.89 min, respectively (P < 0.001).The posterior tibial nerve-flexor hallucis brevis pathway presents a promising alternative for neuromuscular monitoring during anesthesia maintenance. Further investigation is warranted to explore its utility in anesthesia induction and recovery. Trial registration: The trial was registered at www.chictr.org.cn (20/11/2018, ChiCTR1800019651).


Assuntos
Anestesia Geral , Monitoração Neuromuscular , Humanos , Estudos de Viabilidade , Estudos Prospectivos , Nervo Tibial
3.
J Ethnopharmacol ; 328: 118128, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38561056

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the clinic, Shenqi Fuzheng Injection (SFI) is used as an adjuvant for cancer chemotherapy. However, the molecular mechanism is unclear. AIM OF THE STUDY: We screened potential targets of SFI action on gliomas by network pharmacology and performed experiments to validate possible molecular mechanisms against gliomas. MATERIALS AND METHODS: We consulted relevant reports on the SFI and glioma incidence from PubMed and Web of Science and focused on the mechanism through which the SFI inhibits glioma. According to the literature, two primary SFI components-Codonopsis pilosula (Franch.) Nannf. and Astragalus membranaceus (Fisch.) Bunge-have been found. All plant names have been sourced from "The Plant List" (www.theplantlist.org). The cell lines U87, T98G and GL261 were used in this study. The inhibitory effects of SFI on glioma cells U87 and T98G were detected by CCK-8 assay, EdU, plate cloning assay, scratch assay, Transwell assay, immunofluorescence, flow cytometry and Western blot. A subcutaneous tumor model of C57BL/6 mice was constructed using GL261 cells, and the SFI was evaluated by HE staining and immunohistochemistry. The targets of glioma and the SFI were screened using network pharmacology. RESULTS: A total of 110 targets were enriched, and a total of 26 major active components in the SFI were investigated. There were a total of 3,343 targets for gliomas, of which 79 targets were shared between the SFI and glioma tissues. SFI successfully prevented proliferation and caused cellular S-phase blockage in U87 and T98G cells, thus decreasing their growth. Furthermore, SFI suppressed cell migration by downregulating EMT marker expression. According to the results of the in vivo tests, the SFI dramatically decreased the development of tumors in a transplanted tumour model. Network pharmacological studies revealed that the SRC/PI3K/AKT signaling pathway may be the pathway through which SFI exerts its anti-glioma effects. CONCLUSIONS: The findings revealed that the SRC/PI3K/AKT signaling pathway may be involved in the mechanism through which SFI inhibits the proliferation and migration of glioma cells.


Assuntos
Medicamentos de Ervas Chinesas , Glioma , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Farmacologia em Rede , Camundongos Endogâmicos C57BL , Transdução de Sinais , Glioma/tratamento farmacológico , Proliferação de Células
4.
Artigo em Inglês | MEDLINE | ID: mdl-38608287

RESUMO

Copper (Cu)-based perovskites are promising for lead-free perovskite light-emitting diodes (PeLEDs). However, it remains a significant challenge to achieve high performance devices due to the nonradiative loss caused by the disordered crystallization and lack of passivation. Crown ethers are known to form host-guest complexes by the interaction between C-O-C groups and certain cations, and 18-crown-6 (18C6) with an appropriate complementary size can interact with Cs+ and Cu+ cations. Herein, we studied the interaction between CsCu2I3 and two crowns with the same cyclic size, 18C6 and dibenzo-18-crown-6 (D18C6). Particularly, D18C6 can reduce the nonradiative recombination rate of CsCu2I3 film by passivating the defects and optimizing the film morphology effectively. The room mean square (RMS) decreased from 5.06 to 2.95 nm, and the PLQY was promoted from 4.71% to 19.9%. Besides, D18C6 can also decrease the barrier of hole injection. The PeLEDs based on D18C6-modified CsCu2I3 realized noticeable improvement with a maximum luminance and EQE of 583 cd/m2 and 0.662%, respectively.

5.
Chemistry ; : e202400899, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576216

RESUMO

An amphiphilic aza-BODIPY dye (S)-1 bearing two chiral hydrophilic side chains with S-stereogenic centers was synthesized. This dye exhibited kinetic-controlled self-assembly pathways and supramolecular chiral polymorphism properties in MeOH/H2O (9/1, v/v) mixed solvent. The (S)-1 monomers first aggregated into a kinetic controlled, off-pathway species Agg. A, which was spontaneously transformed into an on-pathway metastable aggregate (Agg. B) and subsequently into the thermodynamic Agg. C. The three aggregate polymorphs of dye (S)-1 displayed distinct optical properties and nanomorphologies. In particular, chiral J-aggregation characteristics were observed for both Agg. B and Agg. C, such as Davydov-split absorption bands (Agg. B), extremely sharp and intense J-band with large bathochromic shift (Agg. C), non-diminished fluorescence upon aggregation, as well as strong bisignated Cotton effects. Moreover, the AFM and TEM studies revealed that Agg. A had the morphology of nanoparticle while fibril or rod-like helical nanostructures with left-handedness were observed respectively for Agg. B and Agg. C. By controlling the kinetic transformation process from Agg. B to Agg. C, thin films consisting of Agg. B and Agg. C with different ratios were prepared, which displayed tunable CPL with emission maxima at 788-805 nm and g-factors between -4.2×10-2 and -5.1×10-2.

6.
Plant Physiol Biochem ; 208: 108535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503187

RESUMO

Aluminum (Al) toxicity is the major constraint on plant growth and productivity in acidic soils. An adaptive mechanism to enhance Al tolerance in plants is mediated malate exudation from roots through the involvement of ALMT (Al-activated malate transporter) channels. The underlying Al tolerance mechanisms of stylo (Stylosanthes guianensis), an important tropical legume that exhibits superior Al tolerance, remain largely unknown, and knowledge of the potential contribution of ALMT genes to Al detoxification in stylo is limited. In this study, stylo root growth was inhibited by Al toxicity, accompanied by increases in malate and citrate exudation from roots. A total of 11 ALMT genes were subsequently identified in the stylo genome and named SgALMT1 to SgALMT11. Diverse responses to metal stresses were observed for these SgALMT genes in stylo roots. Among them, the expressions of 6 out of the 11 SgALMTs were upregulated by Al toxicity. SgALMT2, a root-specific and Al-activated gene, was selected for functional characterization. Subcellular localization analysis revealed that the SgALMT2 protein is localized to the plasma membrane. The function of SgALMT2 in mediating malate release was confirmed by analysis of the malate exudation rate from transgenic composite stylo plants overexpressing SgALMT2. Furthermore, overexpression of SgALMT2 led to increased root growth in transgenic stylo plants treated with Al through decreased Al accumulation in roots. Taken together, the results of this study suggest that malate secretion mediated by SgALMT2 contributes to the ability of stylo to cope with Al toxicity.


Assuntos
Alumínio , Fabaceae , Alumínio/toxicidade , Alumínio/metabolismo , Malatos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fabaceae/metabolismo
7.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 551-563, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38404180

RESUMO

Cisplatin (CDDP) is a widely used chemotherapeutic agent that has remarkable antineoplastic effects. However, CDDP can cause severe acute kidney injury (AKI), which limits its clinical application. Agrimol B is the main active ingredient found in Agrimonia pilosa Ledeb and has a variety of pharmacological activities. The effect of agrimol B on CDDP-induced renal toxicity has not been determined. To investigate whether agrimol B has a protective effect against CDDP-induced AKI, we first identify Sirtuin 1 (Sirt1) as a critical target protein of agrimol B in regulating AKI through network pharmacology analysis. Subsequently, the AKI mouse model is induced by administering a single dose of CDDP via intraperitoneal injection. By detecting the serum urea nitrogen and creatinine levels, as well as the histopathological changes, we confirm that agrimol B effectively reduces CDDP-induced AKI. In addition, treatment with agrimol B counteracts the increase in renal malondialdehyde level and the decrease in superoxide dismutase (SOD), catalase and glutathione levels induced by CDDP. Moreover, western blot results reveal that agrimol B upregulates the expressions of Sirt1, SOD2, nuclear factor erythroid2-related factor 2, and downstream molecules, including heme oxygenase 1 and NAD(P)H quinone dehydrogenase 1. However, administration of the Sirt1 inhibitor EX527 abolishes the effects of agrimol B. Finally, we establish a tumor-bearing mouse model and find that agrimol B has a synergistic antitumor effect with CDDP. Overall, agrimol B attenuates CDDP-induced AKI by activating the Sirt1/Nrf2 signaling pathway to counteract oxidative stress, suggesting that this compound is a potential therapeutic agent for the treatment of CDDP-induced AKI.


Assuntos
Injúria Renal Aguda , Butanonas , Cisplatino , Fenóis , Camundongos , Animais , Cisplatino/toxicidade , Sirtuína 1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Transdução de Sinais , Rim/metabolismo , Estresse Oxidativo
8.
Nutrients ; 16(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337734

RESUMO

The biosynthesis of thyroid hormones is essential for brain and neurological development. It requires iodine as a key component but is also influenced by other nutrients. Evidence for the combined nutrient status in relation to thyroid hormones during pregnancy is limited. We aimed to investigate the joint associations of iodine, selenium, zinc, calcium, magnesium and iron with maternal thyroid functions in 489 pregnant women from Hangzhou, China. Serum levels of six essential minerals and thyroid function parameters were measured during the first antenatal visit. Linear regression, quantile g-computation and Bayesian kernel machine regression were used to explore the individual and joint relationships between the six minerals and thyroid hormones. Linear regression analyses revealed that calcium was positively associated with free triiodothyronine (FT3). Zinc was positively associated with free thyroxine (FT4). Iodine was negatively associated with thyroid-stimulating hormone (TSH) and positively associated with FT3 and FT4. The quantile g-computation and BKMR models indicated that the joint nutrient concentration was negatively associated with TSH and positively associated with FT3 and FT4. Among the six minerals, iodine contributed most to thyroid function. The findings suggested that maintaining the appropriate concentration of minerals, either as individuals or a mixture, is important for thyroid health during pregnancy.


Assuntos
Iodo , Selênio , Feminino , Humanos , Gravidez , Gestantes , Cálcio , Teorema de Bayes , Testes de Função Tireóidea , Hormônios Tireóideos , Tireotropina , Zinco , China , Tiroxina
9.
Hum Vaccin Immunother ; 20(1): 2318815, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38419524

RESUMO

This study aims to conduct a bibliometric analysis, employing visualization tools to examine literature pertaining to tumor immune evasion related to anti-CTLA-4 and anti-PD-1/PD-L1 therapy from 1999 to 2022. A special emphasis is placed on the interplay between tumor microenvironment, signaling pathways, immune cells and immune evasion, with data sourced from the Web of Science core collection (WoSCC). Advanced tools, including VOSviewer, Citespace, and Scimago Graphica, were utilized to analyze various parameters, such as co-authorship/co-citation patterns, regional contributions, journal preferences, keyword co-occurrences, and significant citation bursts. Out of 4778 publications reviewed, there was a marked increase in research focusing on immune evasion, with bladder cancer being notably prominent. Geographically, China, the USA, and Japan were the leading contributors. Prestigious institutions like MD Anderson Cancer Center, Harvard Medical School, Fudan University, and Sun Yat Sen University emerged as major players. Renowned journals in this domain included Frontiers in Immunology, Cancers, and Frontiers in Oncology. Ehen LP and Wang W were identified as prolific authors on this topic, while Topalian SL stood out as one of the most cited. Research current situation is notably pivoting toward challenges like immunotherapy resistance and the intricate signaling pathways driving drug resistance. This bibliometric study seeks to provide a comprehensive overview of past and current research trends, emphasizing the potential role of tumor microenvironment, signaling pathways and immune cells in the context of immune checkpoint inhibitors (ICIs) and tumor immune evasion.


Assuntos
Microambiente Tumoral , Neoplasias da Bexiga Urinária , Humanos , Evasão da Resposta Imune , Imunoterapia , Bibliometria
10.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38339510

RESUMO

In this study, we propose a meticulous method for the three-dimensional modeling of slope models using structured light, a swift and cost-effective technique. Our approach aims to enhance the understanding of slope behavior during landslides by capturing and analyzing surface deformations. The methodology involves the initial capture of images at various stages of landslides, followed by the application of the structured light method for precise three-dimensional reconstructions at each stage. The system's low-cost nature and operational convenience make it accessible for widespread use. Subsequently, a comparative analysis is conducted to identify regions susceptible to severe landslide disasters, providing valuable insights for risk assessment. Our findings underscore the efficacy of this system in facilitating a qualitative analysis of landslide-prone areas, offering a swift and cost-efficient solution for the three-dimensional reconstruction of slope models.

11.
Adv Mater ; : e2313746, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332722

RESUMO

In organic light-emitting diode (OLED), achieving high efficiency requires effective triplet exciton confinement by carrier-transporting materials, which typically have higher triplet energy (ET ) than the emitter, leading to poor stability. Here, an electron-transporting material (ETM), whose ET is 0.32 eV lower than that of the emitter is reported. In devices, it surprisingly exhibits strong confinement effect and generates excellent efficiency. Additionally, the device operational lifetime is 4.9 times longer than the device with a standard ETM, 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl) phenyl (whose ET 0.36 eV is higher than the emitter). This anomalous finding is ascribed to the exceptionally long triplet state lifetime (≈0.2 s) of the ETM. It is named as long-lifetime triplet exciton reservoir effect. The systematic analysis reveals that the long triplet lifetime of ETM can compensate the requirement for high ET with the help of endothermic energy transfer. Such combination of low ET and long lifetime provides equivalent exciton confinement effect and high molecular stability simultaneously. It offers a novel molecular design paradigm for breaking the dilemma between high efficiency and prolonged operational lifetime in OLEDs.

12.
Metabolites ; 14(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393000

RESUMO

Emerging pollutants, a category of compounds currently not regulated or inadequately regulated by law, have recently become a focal point of research due to their potential toxic effects on human health. The gut microbiota plays a pivotal role in human health; it is particularly susceptible to disruption and alteration upon exposure to a range of toxic environmental chemicals, including emerging contaminants. The disturbance of the gut microbiome caused by environmental pollutants may represent a mechanism through which environmental chemicals exert their toxic effects, a mechanism that is garnering increasing attention. However, the discussion on the toxic link between emerging pollutants and glucose metabolism remains insufficiently explored. This review aims to establish a connection between emerging pollutants and glucose metabolism through the gut microbiota, delving into the toxic impacts of these pollutants on glucose metabolism and the potential role played by the gut microbiota.

13.
Environ Int ; 185: 108513, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382403

RESUMO

Cadmium (Cd) is a toxic heavy metal found in natural and industrial environments. Exposure to Cd can lead to various metabolic disturbances, notably disrupting glucose and lipid homeostasis. Despite this recognition, the direct impact of Cd exposure on lipid metabolism within adipose tissue, and the mechanisms underlying these effects, have not been fully elucidated. In this study, we found that Cd accumulates in adipose tissues of mice subjected to Cd exposure. Intriguingly, Cd exposure in itself did not induce significant alterations in the adipose tissue under normal conditions. However, when subjected to cold stimulation, several notable changes were observed in the mice exposed to Cd, including a reduction in the drop of body temperature, a decrease in the size of inguinal white adipose tissue (WAT), and an increase in the expression of thermogenic genes UCP1 and PRDM16. These results indicate that Cd exposure might enhance the responsiveness of adipose tissue to external stimuli and increase the energy expenditure of the tissue. RNA-seq analysis further revealed that Cd exposure altered gene expression profiles, particularly affecting peroxisome proliferator-activated receptor (PPAR)-mediated metabolic pathways, promoting metabolic remodeling in adipose tissue and resulting in the depletion of lipids stored in adipose tissue for energy. Non-targeted metabolomic analysis of mouse serum showed that Cd exposure significantly disrupted metabolites and significantly increased serum fatty acid and triglyceride levels. Correspondingly, population-level data confirmed an association between Cd exposure and elevated levels of serum total cholesterol, total triglycerides, and low-density lipoprotein cholesterol. In summary, we provide substantial evidence of the molecular events induced by Cd that are relevant to the regulation of lipid metabolism in adipose tissue. Our findings suggest that the toxic effects of Cd can impact adipocyte functionality, positioning adipose tissue as a critical target for metabolic diseases resulting from Cd exposure.


Assuntos
Tecido Adiposo Marrom , Cádmio , Camundongos , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Tecido Adiposo Marrom/metabolismo , Transcriptoma , Tecido Adiposo , Perfilação da Expressão Gênica , Colesterol
14.
Mol Cell ; 84(1): 120-130, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181755

RESUMO

To survive, all organisms need the ability to accurately recognize and neutralize pathogens. As a result, many of the fundamental strategies that our innate immune system uses to fight infection have deep evolutionary roots. The innate immune sensor cyclic-GMP-AMP synthase (cGAS), an enzyme that plays a critical role in our bodies by sensing and signaling in response to microbial infection, is broadly conserved and has functional homologs in many vertebrates, invertebrates, and even bacteria. In this review, we will provide an overview of cGAS and cGAS-like signaling in eukaryotes before discussing cGAS-like homologs in bacteria.


Assuntos
Bactérias , Evolução Biológica , Animais , Humanos , Bactérias/genética , Eucariotos , Sistema Imunitário , Nucleotidiltransferases/genética
15.
Angew Chem Int Ed Engl ; 63(11): e202319875, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38225205

RESUMO

Achieving photothermal therapy (PTT) at ultralow laser power density is crucial for minimizing photo-damage and allowing for higher maximum permissible skin exposure. However, this requires photothermal agents to possess not just superior photothermal conversion efficiency (PCE), but also exceptional near-infrared (NIR) absorptivity. J-aggregates, exhibit a significant redshift and narrower absorption peak with a higher extinction coefficient. Nevertheless, achieving predictable J-aggregates through molecular design remains a challenge. In this study, we successfully induced desirable J-aggregation (λabs max : 968 nm, ϵ: 2.96×105  M-1 cm-1 , λem max : 972 nm, ΦFL : 6.2 %) by tuning electrostatic interactions between π-conjugated molecular planes through manipulating molecular surface electrostatic potential of aromatic ring-fused aza-BODIPY dyes. Notably, by controlling the preparation method for encapsulating dyes into F-127 polymer, we were able to selectively generate H-/J-aggregates, respectively. Furthermore, the J-aggregates exhibited two controllable morphologies: nanospheres and nanowires. Importantly, the shortwave-infrared J-aggregated nanoparticles with impressive PCE of 72.9 % effectively destroyed cancer cells and mice-tumors at an ultralow power density of 0.27 W cm-2 (915 nm). This phototherapeutic nano-platform, which generates predictable J-aggregation behavior, and can controllably form J-/H-aggregates and selectable J-aggregate morphology, is a valuable paradigm for developing photothermal agents for tumor-treatment at ultralow laser power density.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Compostos de Boro/uso terapêutico , Neoplasias/tratamento farmacológico , Corantes , Lasers , Fototerapia/métodos , Linhagem Celular Tumoral
16.
Chem Soc Rev ; 53(4): 1769-1788, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269613

RESUMO

The emerging perovskite solar cell (PSC) technology has attracted significant attention due to its superior power conversion efficiency (PCE) among the thin-film photovoltaic technologies. However, the toxicity of lead and poor stability of lead halide materials hinder their commercialization. In this case, after a decade of effort, various categories of lead-free perovskites and perovskite-like materials have been developed, including tin halide perovskites, double perovskites, defect-structured perovskites, and rudorffites. However, the performance of the corresponding devices still falls short of expectations, especially their PCE. The limitations mainly originate from either the unstable lattice structure of these materials, which causes the distortion of their octahedra, or their low dimensionality (e.g., structural and electronic dimensionality)-correlated poor carrier transport and self-trapping effect, accelerating nonradiative recombination. Therefore, understanding the relationship between the structures and performance in these emerging candidates and leveraging these insights to design or modify new lead-free perovskites is of great significance. Herein, we review the variety of dimensionalities in different categories of lead-free perovskites and perovskite-like materials and conclude that dimensionality is an important aspect among the crucial indexes that determine the performance of lead-free PSCs. In addition, we summarize the modulation of both structural and electronic dimensionality, and the corresponding enhanced optoelectronic properties in different categories. Finally, perspectives on the future development of lead-free perovskites and perovskite-like materials for photovoltaic applications are provided. We hope that this review will provide researchers with a concise overview of these emerging materials and help them leverage dimensionality to break the bottleneck in photovoltaic applications.

17.
iScience ; 27(1): 108729, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38230259

RESUMO

CircRNAs are implicated in colorectal cancer (CRC) development and progression. Protein O-fucosyltransferase 1 (POFUT1) plays an oncogenic role via activating Notch1 signaling in CRC. However, the roles of circPOFUT1, which is originated from POFUT1, have not been investigated. Our study showed circPOFUT1 was highly expressed in CRC tissues and cells. CircPOFUT1 enhanced the proliferation, migration and invasion of CRC cells, and promoted tumor growth and liver metastasis in vivo. It also reinforced stemness and chemoresistance of CRC cells. Mechanistically, circPOFUT1 regulated the function of E2F7 via sponging miR-653-5p, thereby transcriptionally inducing WDR66 expression and further promoting metastasis in CRC. On the other hand, circPOFUT1 promoted stemness and chemoresistance of CRC cells via stabilizing BMI1 in an IGF2BP1-dependent manner. In conclusion, circPOFUT1 fosters CRC metastasis and chemoresistance via decoying miR-653-5p/E2F7/WDR66 axis and stabilizing BMI1.

18.
Small ; : e2308590, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295096

RESUMO

Flexible broadband photodetectors are desired but challenging to be fabricated for next-generation wearable intelligent optoelectronic devices. Considering the narrow bandgap and strong light absorption, molybdenum telluride (MoTe2 ) based photoelectrochemical photodetectors are successfully assembled by liquid phase exfoliation accompanied with the electrophoretic deposited method. This MoTe2 -based photodetector shows a broadband detection in ultraviolet-near-infrared band, long-term stability within 18000 s, and fast response in millisecond-level (response time≈19 ms, recovery time≈26 ms). More importantly, even though the MoTe2 photodetector is bent and twisted at a high degree for several hundred times, it still shows excellent flexibility with stable on-off switching characteristics. Additionally, this photodetector displays a good response for rotation angles in the range from 0° to 360°, and the extracted Iph maintain almost the same value approximately 0.97 µA cm-2 , suggesting an omnidirectional detection capability. This work demonstrates the proposed flexible photoanode shows a great potential in future broadband omnidirectional detection systems.

19.
Toxics ; 12(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38251002

RESUMO

Emerging contaminants have been increasingly recognized as critical determinants in global public health outcomes. However, the intricate relationship between these contaminants and glucose metabolism remains to be fully elucidated. The paucity of comprehensive clinical data, coupled with the need for in-depth mechanistic investigations, underscores the urgency to decipher the precise molecular and cellular pathways through which these contaminants potentially mediate the initiation and progression of diabetes mellitus. A profound understanding of the epidemiological impact of these emerging contaminants, as well as the elucidation of the underlying mechanistic pathways, is indispensable for the formulation of evidence-based policy and preventive interventions. This review systematically aggregates contemporary findings from epidemiological investigations and delves into the mechanistic correlates that tether exposure to emerging contaminants, including endocrine disruptors, perfluorinated compounds, microplastics, and antibiotics, to glycemic dysregulation. A nuanced exploration is undertaken focusing on potential dietary sources and the consequential role of the gut microbiome in their toxic effects. This review endeavors to provide a foundational reference for future investigations into the complex interplay between emerging contaminants and diabetes mellitus.

20.
ACS Appl Mater Interfaces ; 16(3): 4099-4107, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38189255

RESUMO

To address the toxicity and stability issues of traditional lead halide perovskite solar cells (PSCs), the development of lead-free PSCs, such as Cs2AgBiBr6 solar cells, is of great significance. However, due to the low defect formation energy of Cs2AgBiBr6, a large number of vacancies, including A-site vacancies and X-site vacancies, form during the fabrication process of the Cs2AgBiBr6 film, which seriously damage the performance of the devices. The traditional phenylethylammonium (PEA) cation, mainly focusing on passivating A-site vacancies, is incapable of reducing X-site vacancies and so results in a limited performance improvement in Cs2AgBiBr6 solar cells. Herein, inspired by the capability of the Lewis base to coordinate with metal cations, a series of N-heterocyclic amines are introduced to serve as a dual-site passivator, reducing A-site and X-site vacancies at the same time. The highest power conversion efficiency of modified Cs2AgBiBr6 solar cells has been increased 36% from 1.10 to 1.50%. Further investigation reveals that the higher electron density of additives would lead to a stronger interaction with metal cations like Ag+ and Bi3+, thus reducing more X-site defects and improving carrier dynamics. Our work provides a strategy for passivating perovskite with various kinds of defects and reveals the connection between the coordination capability of additives and device performance enhancement, which could be instructive in improving the performance of lead-free PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...