Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 140: 112802, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39088924

RESUMO

BACKGROUND: Formononetin (FNT) is an isoflavone known for its anti-inflammatory properties and has been shown to reduce insulin resistance in Type 2 Diabetes Mellitus (T2DM). However, its effects and the underlying mechanisms in diabetic liver injury remain largely unexplored. METHODS: We established a T2DM-induced liver injury mouse model by feeding high-fat diet, followed by injecting streptozotocin. The mice were then treated with FNT and the liver function in these mice was assessed. Macrophage markers in FNT-treated T2DM mice or human THP-1 cells were evaluated using flow cytometry, RT-qPCR, and Western blotting. The expression of PTP1B and STAT6 in mouse liver tissues and THP-1 cells was analyzed. Molecular docking predicted the interaction between PTP1B and STAT6, which was validated via co-immunoprecipitation (Co-IP) and phos-tag analysis. Microscale thermophoresis (MST) assessed the binding affinity of FNT to PTP1B. RESULTS: FNT treatment significantly ameliorated blood glucose levels, hepatocyte apoptosis, inflammatory response, and liver dysfunction in T2DM mice. Moreover, FNT facilitated M2 macrophage polarization in both T2DM mice and high glucose (HG)-induced THP-1-derived macrophages. The PTP1B/STAT6 axis, deregulated in T2DM mice, was normalized by FNT treatment, which counteracted the T2DM-induced upregulation of PTP1B and downregulation of phosphorylated STAT6. Molecular docking and subsequent analyses revealed that PTP1B binds to and dephosphorylates STAT6 at the S325A site. In contrast, FNT strongly binds to PTP1B and influences its expression at the K116A site, promoting M2 polarization of THP-1 cells via downregulation of PTP1B. CONCLUSION: Formononetin mitigates diabetic hepatic injury by fostering M2 macrophage polarization via the PTP1B/STAT6 axis.

2.
J Oncol ; 2021: 1173869, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34697541

RESUMO

Gastric cancer (GC) is the most common gastrointestinal cancer and the main cause of tumor-related death. Exploring markers for early diagnosis and new therapeutic targets is always on the way. In the last 10 years, long noncoding RNAs (lncRNAs) have been widely proved to be involved in the progress of many tumors and are regarded as potential targets for tumor therapy. We found that LINC00152, a newly identified lncRNA, was significantly upregulated in GC tissues and affected clinicopathological characteristics in GC patients. Furthermore, we observed that LINC00152 knockdown can significantly reduce cell proliferation and promote apoptosis in human gastric cancer cells. Further bioinformatic analysis indicated that LINC00152 competitively bound with miR-138 and regulated the expression of miR-138. Moreover, SIRT2 was further proved to be a downstream target of miR-138. Overall, this study elucidates the molecular mechanism of LINC00152 underlying the malignant phenotype of GC cells by mediating miR-138/SIRT2 axis, which provides a new understanding of the role and molecular mechanism of lncRNA in GC and also provides a new way for the treatment of gastric cancer.

3.
Environ Toxicol ; 36(9): 1775-1784, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34089293

RESUMO

Pneumonia is an inflammatory disease induced by infection with different pathogens. Currently, multiple preclinical studies have revealed that shikonin, a natural naphthoquinone, can mitigate lipopolysaccharide (LPS)-induced inflammation, but its underlying mechanism in pneumonia remains unknown. This research was designed to explore the function and regulatory mechanism of shikonin in LPS-induced cell injury and inflammation in WI-38 cells. In-vitro model of pneumonia was constructed by treating WI-38 cells with LPS. Expression of miR-489-3p and MAP2K1 was tested by RT-qPCR and (or) Western blot analysis. Cell viability was examined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide assay. The productions of pro-inflammatory cytokines were determined by enzyme-linked immunosorbent assays. Cell apoptosis was detected by Western blot and flow cytometry analysis. In the current study, LPS induced WI-38 cell damage by inhibiting cell viability and promoting cell apoptosis and inflammation. Shikonin ameliorated LPS-induced cell injury and elevated miR-489-3p expression. LPS-induced inflammatory injury was further mitigated by upregulation of miR-489-3p. In addition, MAP2K1, the target of miR-489-3p, was upregulated by LPS. Furthermore, upregulation of MAP2K1 reversed the influence of shikonin and miR-489-3p mimics on LPS-induced cell injury and inflammation. This study revealed that shikonin protected WI-38 cells against LPS-induced cell injury and inflammatory response by regulating the miR-489-3p/MAP2K1 axis, thus affecting the progression of pneumonia.


Assuntos
MicroRNAs , Naftoquinonas , Apoptose , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , Naftoquinonas/farmacologia
4.
Biomed Pharmacother ; 106: 1250-1257, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30119194

RESUMO

The present study was aimed to elucidate the pharmacological effect of Formononetin (FMN) treatment on STZ-induced diabetic cognitive dysfunction. The diabetic model was induced by an intraperitoneally injection of 180 mg/kg STZ. The animals were randomly divided into five groups: control group, streptozocin (STZ, 180 mg/kg) group, STZ + metformin (Met, 200 mg/kg) group, STZ + FMN (25 mg/kg) group, STZ + FMN (50 mg/kg) group. The mice were intragastrically administrated with metformin (Met, 200 mg/kg) or FMN (25, 50 mg/kg) once daily for 6 weeks. The blood glucose content and body weight were examined. Morris water maze test and Y maze test were used to evaluate the learning and memory abilities. The cognitive decline was reversed by regulating superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-a (TNF-α), interleukin(IL)-1ß, IL-6 in serum and hippocampus. The protein expressions of high mobility group box-1 protein (HMGB1), toll like receptor 4 (TLR4), myeloid differentiating factor 88 (MyD88), inhibitor of NF-κB (IκBα), p-IκBα, nuclear factor kappa-B(NF-κB), p-NF-κB, NOD-like receptor 3(NLRP3), apoptosis-associated speck-like protein containing CARD(ASC) and caspase-1 were detected. Furthermore, the SH-SY5Y cells were exposed to high glucose stimulation, FMN (2.5, 5 and 10 µM) treatment, and glycyrrhizin, the selective inhibitor of HMGB1. After an incubation for 22 h, the SH-SY5Y cells were harvested for detection. As a result, FMN treatment effectively attenuated the body weight, learning and memory abilities, as well as the levels of blood glucose, SOD, MDA, TNF-α, IL-1ß, IL-6. FMN administration also downregulated the protein expressions of HMGB1, TLR4, MyD88, p-IκB, p-NF-κB, NLRP3, ASC and caspase-1. The inhibition of HMGB1 by glycyrrhizin also confirmed the involvement of HMGB1/TLR4/NF-κB/NLRP3 pathway in high glucose-induced SH-SY5Y cells. In summary, the results suggested that FMN exhibited the protective effect on STZ-induced cognitive impairment possibly via the mediation of HMGB1/TLR4/NF-κB signaling and NLRP3 inflammasome.


Assuntos
Comportamento Animal/efeitos dos fármacos , Transtornos Cognitivos/prevenção & controle , Cognição/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Isoflavonas/farmacologia , Metformina/farmacologia , Estreptozocina , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Linhagem Celular Tumoral , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Relação Dose-Resposta a Droga , Proteína HMGB1/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA