Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Brain Struct Funct ; 228(6): 1443-1458, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37332061

RESUMO

We hypothesized that brain normal aging maintains a balanced whole-brain functional connectivity (FC) in lifetime: some connections decline while other connections increase or retain, in a summation balance as a result of the cancellation of positive and negative connections. We validated this hypothesis through the use of the brain intrinsic magnetic susceptibility source (denoted by χ) as reconstructed from fMRI phase data. In implementation, we first acquired brain fMRI magnitude (m) and phase (p) data from a cohort of 245 healthy subjects in an age span of 20-60 years, then sought MRI-free brain χ source data by computationally solving an inverse mapping problem, thereby obtained triple datasets {χ, m, p} as brain images in different measurements. We performed GIG-ICA for brain function decomposition and constructed the FC matrices (χFC, mFC, pFC} (in size of 50 × 50 for a selection of 50 ICA nodes), followed by a comparative analysis on brain FC agings using {χ, m, p} data. In the results, we found that: (i) χFC aging upholds a FC balance in life span, in an intermediator between mFC and pFC agings by: mean(pFC) = -0.011 < mean(χFC) = 0.015 < mean(mFC) = 0.036; and (ii) the χFC aging exhibits a slight decline with a slightly downward fitting line in intermediation between the two slightly upward fitting lines for the mFC and pFC agings. On the rationale of the χ-depicted MRI-free brain functional state, the brain χFC aging is closer to the brain FC aging truth than the MRI-borne mFC and pFC agings.


Assuntos
Mapeamento Encefálico , Longevidade , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Envelhecimento , Imageamento por Ressonância Magnética/métodos
2.
Magn Reson Imaging ; 102: 86-95, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37075866

RESUMO

PURPOSE: We report a new cancer imaging modality in the contrast of tissue intrinsic susceptibility property by computed inverse magnetic resonance imaging (CIMRI). METHODS: In MRI physics, an MRI signal is formed from tissue magnetism source (primarily magnetic susceptibility χ) through a cascade of MRI-introduced transformations (e.g. dipole-convolved magnetization) involving MRI setting parameters (e.g. echo time). In two-step computational inverse mappings (from phase image to internal fieldmap to susceptibility source), we could remove the MRI transformations and imaging parameters, thereby obtaining χ-depicted cancer images (canχ) from MRI phase images. Canχ is computationally implemented from clinical cancer MRI phase image by CIMRI. RESULTS: As a result of MRI effect removal through computational inverse mappings, the reconstructed χ map (canχ) could provide a new cancerous tissue depiction in contrast of tissue intrinsic magnetism property (i.e. diamagnetism vs paramagnetism) as in an off-scanner state (e.g. in absence of main field B0). CONCLUSION: Through retrospective clinical cancer MRI data analysis, we reported on the canχ method in technical details and demonstrated its feasibility of innovating cancer imaging in the contrast of tissue intrinsic paramagnetism/diamagnetism property (in a cancer tissue state free from MRI effect).


Assuntos
Encéfalo , Neoplasias , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Magnetismo , Neoplasias/diagnóstico por imagem
3.
Comput Biol Med ; 157: 106802, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965324

RESUMO

OBJECTIVE: If the phase image matrix was acquired from oblique MRI, it is needed to deal with the oblique effect for quantitative susceptibility mapping (QSM), as addressed in this paper. METHODS: We proposed two methods for QSM reconstruction from slice-tilted MRI phase image (tiltQSM): 1) rotData per anti-tilting phase image rotation back into the B0-upright system, and 2) rotKernel per pro-tilting dipole kernel rotation into the same oblique setting as defined by the tilted phase image. Both matrix methods were implemented in an additional preprocessing subroutine to ensure that the phase image and the dipole kernel were represented in the same coordinate system (either in B0-upright system or in B0-tilted system); thereafter tiltQSM could be completed through a regular QSM procedure. Besides the oblique effect, tiltQSM also suffers from MRI anisotropy. We provided numeric simulations, phantom tests and in vivo brain experiments on tiltQSM with oblique MRI (axial slice tilting at 3T). RESULTS: The tiltQSM reconstruction could attain a performance corr > 0.90 (spatial correlation conformance) for small tilting angles <10°. The tiltQSM performance could be further degraded by voxel anisotropy due to image matrix rotation (digital geometry error). CONCLUSIONS: To seek inverse solutions of MRI phase images acquired at oblique MRI (e.g. in axial slice tilting), we proposed tiltQSM to deal with the oblique effect per matrix rotation (either rotData or rotKernel) in a preprocessing subroutine prior to a regular QSM procedure. In practice, it is always recommended to acquire MRI phase images in isotropic matrix at zero obliqueness (or limited to small tilting angles <10°) for maximal (optimal) QSM reconstruction.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos
4.
Biomed Phys Eng Express ; 8(6)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36223687

RESUMO

Understanding the multi-echo phase zigzag signals is instrumental to assuring the quality of MRI phase data acquisition for ensuing phase exploration and exploitation. This paper provides a theoretical and computational mechanism for understanding the zigzag multi-echo phase formation that has been observed in numerical multi-echo gradient-recalled (GRE) simulations of clinical complex-valued brain MRI images. Based on intravoxel dephasing mechanism, we calculated a train of multi-GRE complex-valued voxel signals by simulating field gradient reversals under perturbations in either gradient strength (G±Î´G) or gradient duration (Δ±Î´Δ), as well as the simultaneous bi-variable gradient perturbations (δGδΔ). In this theoretical experiment, we observed a zigzag line of one-shot multi-echo phase signals at a voxel with respect to linear stepwise field gradient variations inδG ∝ n andÎ´Δ âˆ n (where n denotes the echo index). However, the multi-echo magnitude signals were invariant to field gradient reversal, i.e. no multi-echo magnitude zigzags. To support our simulations, we analyzed the clinical one-shot multi-echo T2*-weighted MRI phase images and found similar multi-echo phase zigzags. In this way, we provide a theoretical and computational understanding of multi-echo phase zigzag artifacts, specifically for the eddy current effect on one-shot multi-GRE signals in practice.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos
5.
Brain Sci ; 12(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36291217

RESUMO

The purpose of this study was to assess the effect of chemotherapy on brain functional resting-state signal variability and cognitive function in older long-term survivors of breast cancer. This prospective longitudinal study enrolled women age ≥ 65 years of age who were breast cancer survivors after exposure to chemotherapy (CH), age-matched survivors not exposed to chemotherapy, and healthy controls. Participants completed resting-state functional brain MRI and neurocognitive testing upon enrollment (timepoint 1, TP1) and again two years later (timepoint 2, TP2). There were 20 participants in each of the three groups at TP1. The CH group showed a significant decrease in SDBOLD (blood-oxygen-level-dependent signal variability in standard deviation) in the right middle occipital gyrus (ΔSDBOLD = -0.0018, p = 0.0085, q (pFDR) = 0.043 at MNI (42, -76, 17)) and right middle temporal gyrus (ΔSDBOLD = -0.0021, p = 0.0006, q (pFDR) = 0.001 at MNI (63, -39, -12)). There were negative correlations between the crystallized composite scores and SDBOLD values at the right inferior occipital gyrus (correlation coefficient r = -0.84, p = 0.001, q (pFDR) = 0.016) and right middle temporal gyrus (r = -0.88, p = 0.000, q (pFDR) = 0.017) for the CH group at TP1. SDBOLD could be a potentially useful neuroimaging marker for older long-term survivors of breast cancer with exposure to chemotherapy.

6.
NMR Biomed ; 35(9): e4741, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35411962

RESUMO

PURPOSE: Brain MRI phase imaging assumes a linear spatial mapping of the internal fieldmap that continues to lack theoretical proof. We herein present one proof by replacing the arithmetic mean (in MRI signal formation from the intravoxel spin precession dephasing mechanism) with the geometric mean. METHODS: By replacing the complex arithmetic mean of intravoxel dephasing isochromats with a complex geometric mean, we readily derive a linear spatial mapping of MRI phase imaging from an internal fieldmap without any restriction in phase angles. To justify the replacement of the complex arithmetic mean with the complex geometric mean for realistic brain MRI, we provide numerical T2*MRI simulations to observe the similarity and difference between arithmetic- and geometric-mean phase images in diverse settings with respect to spatial resolution and echo time, with or without proton density weighting. RESULTS: Theoretically, the complex geometric mean model offers a theoretical proof of linear spatial mapping for MRI phase imaging. Numerical simulations of T2*MRI phase imaging show that the geometric mean conforms to the arithmetic mean at a high similarity in the small phase condition (e.g., corr > 0.90 in phase pre-wrapping status at TE  < 10 ms) and the similarity falls at large phase angles (e.g., corr ≈ 0.80 in phase-wrapped status at TE  = 30 ms). CONCLUSION: By replacing the arithmetic mean of intravoxel spin precession dephasing with the geometric mean, we find a theoretical proof for linear MRI phase imaging beyond the small phase condition on spin precession angles.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
7.
Comput Biol Med ; 142: 105190, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34995956

RESUMO

Functional connectivity (FC) is defined by temporal correlations between pairwise timeseries signals, thus inheriting the correlation invariance property. In this report, we look into FC properties under versatile timeseries manipulations, as classified into cardinality-preserved or -reduced timeset operations. We show the effect of timeset operations on brain FC mapping by task-evoked and resting-state fMRI experiments through two data analysis methods: seed-based correlation analysis (SCA) and independent component analysis (ICA). The FC invariance and variability were numerically assessed by a spatial correlation (scorr) of a newly generated FC map after timeset operation against a reference of FC map with the original time setting. In the fingertapping task fMRI experiment, the FC invariance under cardinality-preserved timeset operation was verified with a fingertapping motor function (MOT) extracted by SCA (scorr = 1) and by ICA (scorr >0.98). Under timeset deletion editing, ICA yielded more FC variability (scorr <1) than SCA. Similar FC variability behavior was observed with resting-state fMRI experiments. In conclusion, brain FC mapping (networking) is theoretically invariant to arbitrary timepoint reordering during timeseries data preprocessing, and it is generally variant to timepoint reduction editing except for legitimate downsizing as governed by Nyquist sampling theorem and compressive sensing theory.


Assuntos
Mapeamento Encefálico , Encéfalo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética
8.
Brain Imaging Behav ; 16(1): 43-53, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34019223

RESUMO

Chemotherapy may impair cognition and contribute to accelerated aging. The purpose of this study was to assess the effects of chemotherapy on the connectivity of the default mode network (DMN) in older women with breast cancer. This prospective longitudinal study enrolled women aged ≥ 60 years with stage I-III breast cancer (CTx group) and matched healthy controls (HC group). Study assessments, consisting of resting-state functional MRI (rs-fMRI) and the Picture Sequence Memory (psm) test for episodic memory from the NIH Toolbox for Cognition, were obtained at baseline and within one month after the completion of chemotherapy for the CTx group and at matched intervals for the HC group. Two-sample t-test and FDR multiple comparison were used for statistical inference. Our analysis of the CTx group (N = 19; 60-82 years of age, mean = 66.6, SD = 5.24) compared to the HC group (N = 14; 60-78 years of age, mean = 68.1, SD = 5.69) revealed weaker DMN subnetwork connectivity in the anterior brain but stronger connectivity in the posterior brain at baseline. After chemotherapy, this pattern was reversed, with stronger anterior connectivity and weaker posterior connectivity. In addition, the meta-level functional network connectivity (FNC) among the DMN subnetworks after chemotherapy was consistently weaker than the baseline FNC as seen in the couplings between anterior cingulate cortex (ACC) and retrosplenial (rSplenia) region, with ΔFNC('ACC','rSplenia')=-0.14, t value=-2.44, 95 %CI=[-0.27,-0.10], pFDR<0.05). The baseline FNC matrices of DMN subnetworks were correlated with psm scores (corr = 0.58, p < 0.05). Our results support DMN alterations as a potential neuroimaging biomarker for cancer-related cognitive impairment and accelerated aging.


Assuntos
Neoplasias da Mama , Idoso , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Rede de Modo Padrão , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Estudos Prospectivos
9.
Comput Methods Programs Biomed ; 208: 106249, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34218171

RESUMO

BACKGROUND AND OBJECTIVE: . Given a timeseries of task-evoked functional MRI (fMRI) images (4D spatiotemporal data), we can extract the task mode by statistical independent component analysis (ICA). If the 4D data are spatiotemporally decomposed into subbands (multiresolutions in both time and space), is ICA still capable of extracting the task modes at multiscales? We answer this question using the well-established fingertapping motor-task experiments at 3T and 7T. The positive answer informs that a brain task is spatiotemporal separable at ICA decomposition and shift invariant at multiscales during activation over a finite region. METHODS: . We collected a set of task fMRI datasets from sixteen subjects performing fingertapping at 3T and one single dataset from a different subject at 7T. For each 4D fMRI dataset, we first performed temporal wavelet transform (1D WT) at 3 levels using different wavelets (e.g. 'db1','db2', and 'sym4'), then extracted the task modes from the WT subbands via ICA (as called multi-timescale ICA). Meanwhile, we also performed task mode extraction by applying ICA to 3D spatial WT subbands (as called multi-spacescale ICA). Upon the multiscale ICA results, we identified the primary motor task modes in the motor cortex, in comparison to the raw fMRI data analysis (at level 0). RESULTS: . In the 7T experiment, the multiscale ICA across 3 timescale levels and 2 spacescale levels could extract the primary task modes at a tasktcorr of 0.90 and 0.86, respectively, compared to 0.87 for the ICA task extraction from raw data. In the 3T experiment, the multiscale could extract the primary task mode with 0.92 and 0.91, while the ICA task extraction from raw data was 0.91. CONCLUSION: . ICA could extract the primary motor task modes from wavelet-decomposed multi-timescale and multi-spacescale subbands, construing the broad spatial activation (extent >>voxel size) of the brain motor task performed in a long duration (>>TR). Our experimental results show the brain functional activity signal is spatiotemporal separable as well as shift invariant at multiscales in both time and space.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Extratos Vegetais
10.
Brain Struct Funct ; 226(6): 1925-1941, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34050790

RESUMO

From a brain functional connectivity (FC) matrix, we can identify the hub nodes by a new method of eigencentrality mapping, which not only counts for one node's centrality but also all other nodes' centrality values through correlation connections in an eigenvector of the FC matrix. For the resting-state functional MRI (fMRI) data (complex-valued EPI images in nature), both magnitude and phase images are useful for brain FC analysis. We herein report on brain functional hubness analysis by constructing the FC matrix from phase fMRI data and identifying the hub nodes by eigencentrality mapping. In our study, we collected a cohort of 160 complex-valued fMRI dataset (consisting of magnitude and phase in pairs), and performed independent component analysis (ICA), FC matrix calculation (in size of 50 × 50) and FC matrix eigen decomposition; thereby obtained the 50-node eigencentrality values in the eigenvector associated with the largest eigenvalue. We also compared the hub structures inferred from FC matrices under different thresholding. Alternatively, we obtained the geometric hubs among p value the 50 nodes involved in the FC matrix through the use of harmonic centrality metric. Our results showed that phase fMRI data analysis defines the resting-state brain functional hubs primarily in the central region (subcortex) and the posterior region (parieto-occipital lobes and cerebella). The brain central hubness was supported by the geometric central hubness, which, however, is distinct from the magnitude-inferred hubness in brain superior region (frontal and parietal lobes). Our findings pose a new understanding of (or a debate over) brain functional connectivity architecture.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Humanos , Vias Neurais/diagnóstico por imagem
11.
Comput Biol Med ; 134: 104498, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34051451

RESUMO

In magnetic resonance imaging (MRI), tissue magnetization in the main field B0 is a necessary preparation for magnetic resonance signal formation that imposes an inherent dipole effect on MRI signals, which predisposes an artifact on tissue MRI. In the MRI principle, T2*-weighted MRI can be described by a cascade of data transformations: from the source of tissue magnetic susceptibility (denoted by χ) to the output of complex-valued T2* image (in a magnitude and phase pair). Under the linear approximation of the T2* phase MRI, we can computationally reconstruct the source χ by quantitative susceptibility mapping (QSM), which is an inverse solution that is modeled by computed inverse MRI (CIMRI). For a brain function study using MRI (fMRI), we can reconstruct a timeseries of brain χ images to represent the intrinsic brain function activity called functional QSM (fQSM). This intrinsic depiction is defined as the removal of the artifactual dipole effect and other MRI-introduced distortions from phase data through inverse mapping. With one high-resolution QSM experiment and one group (20 subjects) low-resolution fQSM experiment, we show that the dipole effect manifests as ripples around vessels and a spatial split at a local activation blob and that the dipole effect could be removed by CIMRI. In the context of inverse imaging or undoing MRI transformations (including dipole convolution), we computationally achieve brain intrinsic structural depiction by QSM and intrinsic functional depiction by fQSM.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador
12.
Front Oncol ; 11: 621088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747933

RESUMO

Background: Brain metastases are associated with poor survival. Molecular genetic testing informs on targeted therapy and survival. The purpose of this study was to perform a MR imaging-based radiomic analysis of brain metastases from non-small cell lung cancer (NSCLC) to identify radiomic features that were important for predicting survival duration. Methods: We retrospectively identified our study cohort via an institutional database search for patients with brain metastases from EGFR, ALK, and/or KRAS mutation-positive NSCLC. We segmented the brain metastatic tumors on the brain MR images, extracted radiomic features, constructed radiomic scores from significant radiomic features based on multivariate Cox regression analysis (p < 0.05), and built predictive models for survival duration. Result: Of the 110 patients in the cohort (mean age 57.51 ± 12.32 years; range: 22-85 years, M:F = 37:73), 75, 26, and 15 had NSCLC with EGFR, ALK, and KRAS mutations, respectively. Predictive modeling of survival duration using both clinical and radiomic features yielded areas under the receiver operative characteristic curve of 0.977, 0.905, and 0.947 for the EGFR, ALK, and KRAS mutation-positive groups, respectively. Radiomic scores enabled the separation of each mutation-positive group into two subgroups with significantly different survival durations, i.e., shorter vs. longer duration when comparing to the median survival duration of the group. Conclusion: Our data supports the use of radiomic scores, based on MR imaging of brain metastases from NSCLC, as non-invasive biomarkers for survival duration. Future research with a larger sample size and external cohorts is needed to validate our results.

13.
Front Integr Neurosci ; 14: 534595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328915

RESUMO

Background: Spinal manipulative therapy (SMT) helps to reduce chronic low back pain (cLBP). However, the underlying mechanism of pain relief and the neurological response to SMT remains unclear. We utilized brain functional magnetic resonance imaging (fMRI) upon the application of a real-time spot pressure mechanical stimulus to assess the effects of SMT on patients with cLBP. Methods: Patients with cLBP (Group 1, n = 14) and age-matched healthy controls without cLBP (Group 2, n = 20) were prospectively enrolled. Brain fMRI was performed for Group 1 at three time points: before SMT (TP1), after the first SMT session (TP2), and after the sixth SMT session (TP3). The healthy controls (Group 2) did not receive SMT and underwent only one fMRI scan. During fMRI scanning, a real-time spot pressure mechanical stimulus was applied to the low back area of all participants. Participants in Group 1 completed clinical questionnaires assessing pain and quality of life using a visual analog scale (VAS) and the Chinese Short Form Oswestry Disability Index (C-SFODI), respectively. Results: Before SMT (TP1), there were no significant differences in brain activity between Group 1 and Group 2. After the first SMT session (TP2), Group 1 showed significantly greater brain activity in the right parahippocampal gyrus, right dorsolateral prefrontal cortex, and left precuneus compared to Group 2 (P < 0.05). After the sixth SMT session (TP3), Group 1 showed significantly greater brain activity in the posterior cingulate gyrus and right inferior frontal gyrus compared to Group 2 (P < 0.05). After both the first and sixth SMT sessions (TP2 and TP3), Group 1 had significantly lower VAS pain scores and C-SFODI scores than at TP1 (P < 0.001). Conclusion: We observed alterations in brain activity in regions of the default mode network in patients with cLBP after SMT. These findings suggest the potential utility of the default mode network as a neuroimaging biomarker for pain management in patients with cLBP. Clinical Trial Registration: Chinese Clinical Trial Registry, identifier ChiCTR1800015620.

14.
Front Oncol ; 10: 593, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391274

RESUMO

Lung cancer can be classified into two main categories: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), which are different in treatment strategy and survival probability. The lung CT images of SCLC and NSCLC are similar such that their subtle differences are hardly visually discernible by the human eye through conventional imaging evaluation. We hypothesize that SCLC/NSCLC differentiation could be achieved via computerized image feature analysis and classification in feature space, as termed a radiomic model. The purpose of this study was to use CT radiomics to differentiate SCLC from NSCLC adenocarcinoma. Patients with primary lung cancer, either SCLC or NSCLC adenocarcinoma, were retrospectively identified. The post-diagnosis pre-treatment lung CT images were used to segment the lung cancers. Radiomic features were extracted from histogram-based statistics, textural analysis of tumor images and their wavelet transforms. A minimal-redundancy-maximal-relevance method was used for feature selection. The predictive model was constructed with a multilayer artificial neural network. The performance of the SCLC/NSCLC adenocarcinoma classifier was evaluated by the area under the receiver operating characteristic curve (AUC). Our study cohort consisted of 69 primary lung cancer patients with SCLC (n = 35; age mean ± SD = 66.91± 9.75 years), and NSCLC adenocarcinoma (n = 34; age mean ± SD = 58.55 ± 11.94 years). The SCLC group had more male patients and smokers than the NSCLC group (P < 0.05). Our SCLC/NSCLC classifier achieved an overall performance of AUC of 0.93 (95% confidence interval = [0.85, 0.97]), sensitivity = 0.85, and specificity = 0.85). Adding clinical data such as smoking history could improve the performance slightly. The top ranking radiomic features were mostly textural features. Our results showed that CT radiomics could quantitatively represent tumor heterogeneity and therefore could be used to differentiate primary lung cancer subtypes with satisfying results. CT image processing with the wavelet transformation technique enhanced the radiomic features for SCLC/NSCLC classification. Our pilot study should motivate further investigation of radiomics as a non-invasive approach for early diagnosis and treatment of lung cancer.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31714222

RESUMO

Pulse wave velocity (PWV) is the most important index for quantifying the elasticity of an artery. The accurate estimation of the local PWV is of great relevance to the early diagnosis and effective prevention of arterial stiffness. In ultrasonic transit time-based local PWV estimation, the locations of time fiduciary point (TFP) in the upstrokes of the propagating pulse waves (PWs) are inconsistent because of the reflected waves and ultrasonic noise. In this study, a regional upstroke tracking (RUT) approach that involved identifying the most similar TFP-centered region in the upstrokes is proposed to detect the time delay for improving the local PWV estimation. Five RUT algorithms with different tracking points are assessed via simulation and clinical experiments. To quantitatively evaluate the RUT algorithms, the normalized root-mean-squared errors and standard deviations of the estimated PWVs are calculated using an ultrasound simulation model. The reproducibility of the five RUT algorithms based on 30 human subjects is also evaluated using the Bland-Altman analysis and coefficient of variation (CV). The obtained results show that the RUT algorithms with only three tracking points provide greater accuracy, precision, and reproducibility for the local PWV estimation than the TFP methods. Compared with the TFP methods, the RUT algorithms reduce the mean errors from 12.23% ± 3.10% to 7.13% ± 2.31%, as well as the CVs from 21.76% to 13.39%. In conclusion, the proposed RUT algorithms are superior to the TFP methods for local carotid PWV estimation.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Análise de Onda de Pulso/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem
16.
Front Neurosci ; 13: 204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936819

RESUMO

Conventionally, brain function is inferred from the magnitude data of the complex-valued fMRI output. Since the fMRI phase image (unwrapped) provides a representation of brain internal magnetic fieldmap (by a constant scale difference), it can also be used to study brain function while providing a more direct representation of the brain's magnetic state. In this study, we collected a cohort of resting-state fMRI magnitude and phase data pairs from 600 subjects (age from 10 to 76, 346 males), decomposed the phase data by group independent component analysis (pICA), calculated the functional network connectivity (pFNC). In comparison with the magnitude-based brain function analysis (mICA and mFNC), we find that the pFNC matrix contains fewer significant functional connections (with p-value thresholding) than the mFNC matrix, which are sparsely distributed across the whole brain with near/far interconnections and positive/negative correlations in rough balance. We also find a few of brain rest sub-networks within the phase data, primarily in subcortical, cerebellar, and visual regions. Overall, our findings offer new insights into brain function connectivity in the context of a focus on the brain's internal magnetic state.

17.
Brain Struct Funct ; 224(4): 1489-1503, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30826929

RESUMO

A functional magnetic resonance imaging (fMRI) experiment produces complex-valued images consisting of pairwise magnitude and phase images. As different perspective on the same magnetic source, fMRI magnitude and phase data are complementary for brain function analysis. We collected 600-subject fMRI data during rest, decomposed via group-level independent component analysis (ICA) (mICA and pICA for magnitude and phase respectively), and calculated brain functional network connectivity matrices (mFC and pFC). The pFC matrix shows a fewer of significant connections balanced across positive and negative relationships. In comparison, the mFC matrix contains a positively-biased pattern with more significant connections. Our experiment data analyses also show that human brain maintains a whole-brain connection balance in resting state across an age span from 10 to 76 years, however, phase and magnitude data analyses reveal different connection-specific age effects on significant positive and negative subnetwork couplings.


Assuntos
Envelhecimento/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Adulto Jovem
18.
Front Neurosci ; 12: 15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456485

RESUMO

Spatial smoothing is a widely used preprocessing step in functional magnetic resonance imaging (fMRI) data analysis. In this work, we report on the spatial smoothing effect on task-evoked fMRI brain functional mapping and functional connectivity. Initially, we decomposed the task fMRI data into a collection of components or networks by independent component analysis (ICA). The designed task paradigm helps identify task-modulated ICA components (highly correlated with the task stimuli). For the ICA-extracted primary task component, we then measured the task activation volume at the task response foci. We used the task timecourse (designed) as a reference to order the ICA components according to the task correlations of the ICA timecourses. With the re-ordered ICA components, we calculated the inter-component function connectivity (FC) matrix (correlations among the ICA timecourses). By repeating the spatial smoothing of fMRI data with a Gaussian smoothing kernel with a full width at half maximum (FWHM) of {1, 3, 6, 9, 12, 15, 20, 25, 30, 35} mm, we measured the spatial smoothing effects. Our results show spatial smoothing reveals the following effects: (1) It decreases the task extraction performance of single-subject ICA more than that of multi-subject ICA; (2) It increases the task volume of multi-subject ICA more than that of single-subject ICA; (3) It strengthens the functional connectivity of single-subject ICA more than that of multi-subject ICA; and (4) It impacts the positive-negative imbalance of single-subject ICA more than that of multi-subject ICA. Our experimental results suggest a 2~3 voxel FWHM spatial smoothing for single-subject ICA in achieving an optimal balance of functional connectivity, and a wide range (2~5 voxels) of FWHM for multi-subject ICA.

19.
PLoS One ; 13(1): e0191266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29351339

RESUMO

PURPOSE: To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. METHODS: A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. RESULTS: Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. CONCLUSIONS: The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization.


Assuntos
Mapeamento Encefálico/estatística & dados numéricos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Modelos Neurológicos , Adulto , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Oxigênio/sangue , Razão Sinal-Ruído , Análise e Desempenho de Tarefas
20.
J Neurosci Methods ; 293: 299-309, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29055719

RESUMO

BACKGROUND: The output of BOLD fMRI consists of a pair of magnitude and phase components. While the magnitude data has been widely accepted for brain function analysis, we can also make use of the phase data (unwrapped) since this is a good representation of the internal magnetic field. In this work, we discuss the use of fMRI phase data for brain function analysis. NEW METHODS: The fMRI phase data taken from 100 subjects are preprocessed using standard SPM approaches. Group independent component analysis (ICA) is applied to the magnitude and phase data separately. We then compare the spatial patterns for both magnitude and phase data using an empirical spatial smoothing procedure. We also evaluate the magnitude and phase functional network connectivity (FC) matrices. RESULTS: We observed the positive/negative correlation-balanced functional connectivity in phase data, which is distinct from the positive correlation prevalence in magnitude data. The phase FC (pFC) structure is quite different from the magnitude FC (mFC) in functional clusters (on-diagonal blocks or cliques) and inter-cluster couplings (off-diagonal blocks). COMPARISON WITH EXISTING: Methods since both the magnitude and phase data of the fMRI signals are generated from the same magnetic source, either can be useful for brain function analysis from different perspective (per different measurements). Herein, we report on making use of resting-state fMRI phase data for brain functional analysis in comparison with magnitude data. This exploration in phase fMRI may provide a new arena for more comprehensive brain function analysis.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Estudos de Coortes , Feminino , Humanos , Campos Magnéticos , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Descanso , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...