Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 477: 135242, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39032184

RESUMO

Miscanthus is a common pioneer plant with abundant genetic variation in abandoned mines in southern China. However, the extent to which genetic differentiation among species modulates rhizosphere bacterial communities remains unclear. Miscanthus samples were collected from 26 typical abandoned heavy-metal mines with different soil types in southern China, tested using 14 pairs of simple sequence repeats (SSR) primers, and classified into two genotypes based on Nei's genetic distance. The structure and diversity of rhizosphere bacterial communities were examined using 16 S rRNA sequencing. The results showed that among the factors affecting the rhizosphere bacterial community structure of Miscanthus samples, the role of genotype was not significant, and geographical conditions were the most important factors, followed by pH and total organic carbon (TOC). The process of rhizospheric community assembly varied among different genotypes; however, the recruited species and their abundances were similar. Collectively, we provided an approach based on genetic differentiation to quantify the relative contribution of genotypes to the rhizosphere bacterial community, demonstrating that genotypes contribute less than soil conditions. Our findings provide new insights into the role of host genetics in the ecological processes of plant rhizosphere bacterial communities in abandoned mines and provide theoretical support for microbe-assisted phytoremediation.

2.
Water Res ; 253: 121287, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387264

RESUMO

Biological aqua crust (biogenic aqua crust-BAC) is a potentially sustainable solution for metal(loid) bioremediation in global water using solar energy. However, the key geochemical factors and underlying mechanisms shaping microbial communities in BAC remain poorly understood. The current study aimed at determining the in situ metal(loid) distribution and the key geochemical factors related to microbial community structure and metal(loid)-related genes in BAC of a representative Pb/Zn tailing pond. Here we showed that abundant metal(loid)s (e.g. Pb, As) were co-distributed with Mn/Fe-rich minerals (e.g. biogenic Mn oxide, FeOOH) in BAC. Biogenic Mn oxide (i.e. Mn) was the most dominant factor in shaping microbial community structure in BAC and source tailings. Along with the fact that keystone species (e.g. Burkholderiales, Haliscomenobacter) have the potential to promote Mn ion oxidization and particle agglomeration, as well as Mn is highly associated with metal(loid)-related genes, especially genes related to As redox (e.g. arsC, aoxA), and Cd transport (e.g. zipB), biogenic Mn oxides thus effectively enhance metal(loid) remediation by accelerating the formation of organo-mineral aggregates in biofilm-rich BAC system. Our study indicated that biogenic Mn oxides may play essential roles in facilitating in situ metal(loid) bioremediation in BAC of mine drainage.


Assuntos
Compostos de Manganês , Metais Pesados , Microbiota , Manganês , Chumbo , Bactérias/genética , Óxidos , Minerais
3.
J Hazard Mater ; 443(Pt A): 130241, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36308929

RESUMO

Mining activities in metal mine areas cause serious environmental pollution, thereby imposing stresses to soil ecosystems. Investigating the ecological pattern underlying contaminated soil microbial diversity is essential to understand ecosystem responses to environment changes. Here we collected 624 soil samples from 49 representative metal mines across eastern China and analyzed their soil microbial diversity and biogeographic patterns by using 16 S rRNA gene amplicons. The results showed that deterministic factors dominated in regulating the microbial community in non-contaminated and contaminated soils. Soil pH played a key role in climatic influences on the heavy metal-contaminated soil microbial community. A core microbiome consisting of 25 taxa, which could be employed for the restoration of contaminated soils, was identified. Unlike the non-contaminated soil, stochastic processes were important in shaping the heavy metal-contaminated soil microbial community. The largest source of variations in the soil microbial community was land use type. This result suggests that varied specific ecological remediation strategy ought to be developed for differed land use types. These findings will enhance our understanding of the microbial responses to anthropogenically induced environmental changes and will further help to improve the practices of soil heavy metal contamination remediation.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Solo , Poluentes do Solo/análise , Microbiologia do Solo , Metais Pesados/toxicidade , Metais Pesados/análise , China
4.
Water Res ; 225: 119172, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191530

RESUMO

Ion-adsorption rare earth element (REE) deposits are the main reservoirs of REEs worldwide, and are widely exploited in South China. Microbial diversity is essential for maintaining the performance and function of mining ecosystems. Investigating the ecological patterns underlying the REE mine microbiome is essential to understand ecosystem responses to environmental changes and to improve the bioremediation of mining areas. We applied 16S rRNA and ITS gene sequence analyses to investigate the composition characteristics of prokaryotic (bacteria, archaea) and fungal communities in a river impacted by REE acid mine drainage (REE-AMD). The river formed a unique micro-ecosystem, including the main prokaryotic taxa of Proteobacteria, Acidobacteria, Crenarchaeota, and Euryarchaeota, as well as the main fungal taxa of Ascomycota, Basidiomycota, and Chytridiomycota. Analysis of microbial diversity showed that, unlike prokaryotic communities that responded drastically to pollution disturbances, fungal communities were less affected by REE-AMD, but fluctuated significantly in different seasons. Ecological network analysis revealed that fungal communities have lower connectivity and centrality, and higher modularity than prokaryotic networks, indicating that fungal communities have more stable network structures. The introduction of REE-AMD mainly reduced the complexity of the community network and the number of keystone species, while the proportion of negative prokaryotic-fungal associations in the network increased. Ecological process analysis revealed that, compared to the importance of environmental selection for prokaryotes, stochastic processes might have contributed primarily to fungal communities in REE mining areas. These findings confirm that the different assembly mechanisms of prokaryotic and fungal communities are key to the differences in their responses to environmental perturbations. The findings also provide the first insights into microbiota assembly patterns in REE-AMD and important ecological knowledge for the formation and development of microbial communities in REE mining areas.


Assuntos
Metais Terras Raras , Microbiota , RNA Ribossômico 16S/genética , Metais Terras Raras/análise , Mineração , Archaea/genética , China
5.
J Hazard Mater ; 435: 128959, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35483265

RESUMO

In situ leaching of ion-adsorption rare earth element (REE) deposits has released large amounts of REE-containing wastewater. However, the origin, speciation, distribution and migration of REEs in aqueous systems of the mining catchment are poorly understood. Groundwater, surface water, in situ leachates and weathered granite soil samples were collected from a catchment affected by mining activities in South China. The REE concentrations in groundwater (6.18 × 10-3-0.49 µmol L-1) and surface water (2.54-44.05 µmol L-1) decreased from upstream to downstream. REEs in groundwater were detected in organic matter associated (FA-REE) colloids, while the REE3+ and REE(SO4)+ were converted to REE(CO3)+ and FA-REE colloids from leachates and upstream surface water to downstream. The REE patterns of leachates and upstream groundwater (light and middle REE enrichment) resembled those of soil, but showed heavy REE enrichment due to FA-REE colloids in the downstream. REE in surface water were derived from middle REE enriched leachate. The Ce and Eu anomalies in the water samples indicated the REE origin (i.e., mining activities) and the hydrological variations (e.g., oxidation environment and water-rock interaction). Our results reveal the origin and fate of REE in aqueous systems of ion-adsorption REE mining catchments.


Assuntos
Monitoramento Ambiental , Metais Terras Raras , China , Monitoramento Ambiental/métodos , Mineração , Solo , Água
6.
Environ Microbiol ; 24(2): 919-937, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33848048

RESUMO

Acid mine drainage (AMD) generated by rare earth elements (REEs) deposits exploration contains high concentrations of REEs, ammonium and sulfates, which is quite different from typical metallic AMD. Currently, microbial responses and ecological functions in REEs-AMD impacted rivers are unknown. Here, 16S rRNA analysis and genome-resolved metagenomics were performed on microbial community collected from a REEs-AMD contaminated river. The results showed that REEs-AMD significantly changed river microbial diversity and shaped unique indicator species (e.g. Thaumarchaeota, Methylophilales, Rhodospirillales and Burkholderiales). The main environmental factors regulating community were pH, ammonium and REEs, among which high concentration of REEs increased REEs-dependent enzyme-encoding genes (XoxF and ExaF/PedH). Additionally, we reconstructed 566 metagenome-assembled genomes covering 70.4% of identifying indicators. Genome-centric analysis revealed that the abundant archaea Thaumarchaeota and Xanthomonadaceae were often involved in nitrification and denitrification, while family Burkholderiaceae were capable of sulfide oxidation coupled with dissimilatory nitrate reduction to ammonium. These indicators play crucial roles in nitrogen and sulfur cycling as well as REEs immobilization in REEs-AMD contaminated rivers. This study confirmed the potential dual effect of REEs on microbial community at the functional gene level. Our investigation on the ecological roles of indicators further provided new insights for the development of REEs-AMD bioremediation.


Assuntos
Metais Terras Raras , Microbiota , Mineração , RNA Ribossômico 16S/genética , Rios
7.
Water Res ; 201: 117331, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34153824

RESUMO

Microbial communities play crucial roles in mine drainage generation and remediation. Despite the wide distribution of archaea in the mine ecosystem, their diversity and ecological roles remain less understood than bacteria. Here, we retrieved 56 archaeal metagenome-assembled genomes from a river impacted by rare earth element (REE) mining activities in South China. Genomic analysis showed that archaea represented four distinct lineages, including phyla of Thaumarchaeota, Micrarchaeota, Nanoarchaeota and Thermoplasmata. These archaea represented a considerable fraction (up to 40%) of the total prokaryote community, which might contribute to nitrogen and sulfur cycling in the REE mine drainage. Reconstructed metabolic potential among diverse archaea taxa revealed that archaea were involved in the network of ammonia oxidation, denitrification, sulfate redox reaction, and required substrates supplied by other community members. As the dominant driver of ammonia oxidation, Thaumarchaeota might provide substrates to support the survival of two nano-sized archaea belonging to Micrarchaeota and Nanoarchaeota. Despite the absence of biosynthesis pathways for amino acids and nucleotides, the potential capacity for nitrite reduction (nirD) was observed in Micrarchaeota, indicating that these nano-sized archaea encompassed diverse metabolisms. Moreover, Thermoplasmata, as keystone taxa in community, might be the main genetic donor for the other three archaeal phyla, transferring many environmental resistance related genes (e.g., V/A-type ATPase and Vitamin B12-transporting ATPase). The genetic interactions within archaeal community through horizontal gene transfer might be the key to the formation of archaeal resistance and functional partitioning. This study provides putative metabolic and genetic insights into the diverse archaea taxa from community-level perspectives, and highlights the ecological roles of archaea in REE contaminated aquatic environment.


Assuntos
Archaea , Microbiota , Archaea/genética , China , Genoma Arqueal , Metagenoma , Filogenia , RNA Ribossômico 16S
8.
J Hazard Mater ; 400: 123289, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32947698

RESUMO

China exemplifies the serious and widespread soil heavy metal pollution generated by mining activities. A total of 420 soil samples from 58 metal mines was collected across Eastern China. Total and available heavy metal concentrations, soil physico-chemical properties and geological indices were determined and collected. Risk assessments were applied, and a successive multivariate statistical analysis was carried out to provide insights into the heavy metal contamination characteristics and environmental drivers of heavy metal availability. The results suggested that although the degrees of pollution varied between different mine types, in general they had similar contamination characteristics in different regions. The major pollutants for total concentrations were found to be Cd and As in south and northeast China. The availability of Zn and Cd is relatively higher in south China. Soil physico-chemical properties had major effect on metal availability where soil pH was the most important factor. On a continental scale, soil pH and EC were influenced by the local climate patterns which could further impact on heavy metal availability. Enlightened by this study, future remediation strategies should be focused on steadily increasing soil pH, and building adaptable and sustainable ecological system to maintain low metal availabilities in mine site soils.

9.
Artigo em Inglês | MEDLINE | ID: mdl-30469475

RESUMO

The survival of wetland plants in iron, sulfur and heavy metals-rich mine tailing ponds has been commonly attributed to the iron plaque (IP) on the root surface that acts as a protective barrier. However, the contribution of bacteria potentially regulates the iron-sulfur cycle and heavy metal exclusion at the root surface has not been studied in depth, particularly from a microbial ecology perspective. In this study, a pot experiment using Typha latifolia, a typical wetland plant, in non-polluted soil (NP) and tailing soil (T) was conducted. Samples from four zones, comprising non-rhizosphere soil (NR), rhizosphere soil (R) and internal (I) and external (E) layers of iron plaque, were collected from the NP and T and analyzed by 16S rRNA sequencing. Simpson index of the genus level showed greater diversities of bacterial community in the NP and its I zone is the most important part of the rhizosphere. PICRUSt predicted that the I zones in both NP and T harbored most of the functional genes. Specifically, functional genes related to sulfur relay and metabolism occurred more in the I zone in the T, whereas those related to iron acquisition and carbon and nitrogen circulation occurred more in the I zone in the NP. Analysis of dominant bacterial communities at genus level showed highest abundance of heavy metal resistant genus Burkholderia in the E zones in both soils, indicating that heavy metal resistance of Typha latifolia driven by Burkholderia mainly occurred at the external layer of IP. Moreover, many bacterial genera, such as Acidithiobacillus, Ferritrophicum, Thiomonas, Metallibacterium and Sideroxydans, involved in iron and sulfur metabolisms were found in the T and most showed higher abundance in the I zone than in the other zones. This work, as the first endeavor to separate the iron plaque into external and internal layers and investigate the variations of the bacterial communities therein, can provide an insight for further understanding the survival strategy of wetland plants, e.g., Typha latifolia, in extreme environment.


Assuntos
Bactérias/isolamento & purificação , Ferro/química , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Rizosfera , Poluentes do Solo/química , Typhaceae/química , Monitoramento Ambiental , Microbiologia do Solo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA