Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1400146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799091

RESUMO

Introduction: The use of controlled-release nitrogen (N) fertilizers has been shown to improve yield and N-use efficiency (NUE) in mechanical transplanted rice. However, the fertilizer requirements for mechanical direct-seeding rice differ from those for mechanical transplanted rice. The effects of controlled-release fertilizers on yield, NUE, and quality in mechanical direct-seeding rice are still unknown. Methods: Hybrid indica rice varieties Yixiangyou 2115 and Fyou 498 were used as test materials, and slow-mixed N fertilizer (120 kg hm-2) as a base (N1), N1+urea-N (30 kg hm-2) once as a base (N2), N1+urea-N (30 kg hm-2) topdressing at the tillering stage (N3), N1+urea-N (30 kg hm-2) topdressing at the booting stage (N4) four N fertilizer management to study their impact on the yield, NUE and quality of mechanical direct-seeding rice. Results and discussion: Compared with Yixiangyou 2115, Fyou 498 significantly increased photosynthetic potential, population growth rate, root vigor, and N transport rate by 3.34-23.88%. This increase further resulted in a significant improvement in the yield and NUE of urea-N topdressing by 1.73-5.95 kg kg-1. However, Fyou 498 showed a significant decrease in the head rice rate and taste value by 3.34-7.67%. All varieties were treated with N4 that significantly increase photosynthetic potential and population growth rate by 15.41-62.72%, reduce the decay rate of root vigor by 5.01-21.39%, promote the N transport amount in stem-sheaths (leaves) by 13.54-59.96%, and then significantly increase the yields by 4.45-20.98% and NUE of urea-N topdressing by 5.20-45.56 kg kg-1. Moreover, the rice processing and taste values were optimized using this model. Correlation analysis revealed to achieve synergistic enhancement of high-yield, high-quality, and high-NUE in rice, it is crucial to focus on increasing photosynthetic potential, population growth rate, and promoting leaf N transport. Specifically, increasing the contribution rate of N transport in stem-sheaths is the most important. These findings offer an effective N management strategy for 4R nutrient stewardship (right source, right method, right rate and right timing) of mechanical direct-seeding hybrid indica rice.

2.
Foods ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540845

RESUMO

The important reason for the commercial value of hybrid rice suffering is due to excessive chalkiness, and the biosynthesis of starch and proteins is critical for regulating chalkiness; however, it is currently unclear how the application of N fertilizer affects grains to reduce their chalkiness and improve their quality. The 2019, 2020, and 2021 trials were conducted in a split-plot design, with high and low chalky varieties as the main plot and N fertilizer rate as the split-plot. The effects of fertilization with 75, 150, and 225 kg N ha-1 on the dynamic synthesis of starch, protein, and endogenous hormones and on the amino acid of hybrid indica rice kernels with different degrees of chalkiness were investigated. Grain physiological activity was higher in low-chalky varieties than in high-chalky varieties, and these physiological parameters were strongly associated with chalkiness formation. Higher N fertilization (150 and 225 kg N ha-1) significantly reduced the proportion of chalky grains (8.93-28.02%) and chalkiness (8.61-33.99%) compared with 75 kg N ha-1. Increased N fertilization decreased the activities of granule-bound starch synthase and starch-debranching enzyme, but significantly increased adenosine diphosphate glucose pyrophosphorylase, soluble starch synthase, and starch-branching enzyme activities, synergistically improving glutamate synthetase and glutamine synthetase enzyme activities, which tended to support the synthesis of amylopectin, α-ketoglutarate, and 3-phosphoglyceric acid-derived amino acids in the endosperm cells of the grains; this favored starch and protein accumulation in the grains at 6-30 days after anthesis. Additionally, N application promoted the synthesis of endogenous hormones 1-aminocyclopropane-1-carboxylic acid, gibberellins, and abscisic acid in grains. Hence, N fertilization reduced the rice chalkiness in hybrid indica rice varieties by balancing grain protein and starch composition and enhancing some endogenous hormone synthesis.

3.
Food Res Int ; 173(Pt 2): 113399, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803737

RESUMO

Viscoelastic properties of gluten proteins critically determine the biscuit-making quality. However, cultivar genetics and light conditions closely regulate the composition of the gluten proteins. The impact of pre- and post-anthesis shading (60 %) on amino acid profile, gluten protein composition, secondary structure, dough performance, and biscuit-making quality were evaluated using four wheat cultivars that differ in gluten protein composition. Pre- and post-anthesis shading increased the contents of gliadin, by 35.8 and 3.1 %; glutenin, by 27.6 and 7.3 %; and total protein, by 21.7 and 10.6 %, respectively, compared with those of unshaded plants. Conversely, the ratios of glutenin/gliadin, ω-/(α,ß + Î³)-gliadin, and high-molecular-weight/low-molecular-weight glutenin subunits decreased with shading. Strong-gluten cultivars exhibited smaller declines in these parameters than weak-gluten cultivars. Secondary structure analysis of the wheat protein revealed that shading increased ß-sheet content but decreased ß-turn content. Changes in protein components and their secondary structures caused an increase in wet gluten content, dough development time, and gluten performance index, thereby decreasing the biscuit spread ratio. Shading stress increased the protein content and nutrition index but decreased the biological value of protein by 2.5 %. Transcriptomic results revealed that shading induced 139 differentially expressed genes that decreased carbohydrate metabolism and increased amino acid metabolism, involved in increased protein content. Thus, canopy shading improves dough performance and nutrition index by regulating the amino acid profiles, protein compositions, and secondary structures. The study provides key insights for achieving superior grain quality under global dimming.


Assuntos
Gliadina , Triticum , Triticum/química , Avaliação Nutricional , Glutens/química , Aminoácidos/metabolismo
4.
Front Plant Sci ; 14: 1251505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881615

RESUMO

Introduction: Nitrogen (N) fertilizer management, especially postponing N topdressing can affect rice eating quality by regulating starch quality of superior and inferior grains, but the details are unclear. This study aimed to evaluate the effects of N topdressing on starch structure and properties of superior and inferior grains in hybrid indica rice with different tastes and to clarify the relationship between starch structure, properties, and taste quality. Methods: Two hybrid indica rice varieties, namely the low-taste Fyou 498 and high-taste Shuangyou 573, were used as experimental materials. Based on 150 kg·N hm-2, three N fertilizer treatments were established: zero N (N0), local farmer practice (basal fertilizer: tillering fertilizer: panicle fertilizer=7:3:0) (N1), postponing N topdressing (basal fertilizer: tillering fertilizer: panicle fertilizer=3:1:6) (N2). Results: The starch granules of superior grains were more complete, and the decrease in small granules content and the stability of starch crystals were a certain extent less than those of inferior grains. Compared with N1, under N2, low-taste and high-taste varieties large starch granules content were significantly reduced by 6.89%, 0.74% in superior grains and 4.26%, 2.71% in inferior grains, the (B2 + B3) chains was significantly reduced by 1.61%, 0.98% in superior grains, and 1.18%, 0.97% in inferior grains, both reduced the relative crystallinity and 1045/1022 cm-1, thereby decreasing the stability of the starch crystalline region and the orderliness of starch granules. N2 treatment reduced the ΔHgel of two varieties. These changes ultimately contributed to the enhancement of the taste values in superior and inferior grains in both varieties, especially the inferior grains. Correlation analysis showed that the average starch volume diameter (D[4,3]) and relative crystallinity were significantly positively correlated with the taste value of superior and inferior sgrains, suggesting their potential use as an evaluation index for the simultaneous enhancement of the taste value of rice with superior and inferior grains. Discussion: Based on 150 kg·N hm-2, postponing N topdressing (basal fertilizer: tillering fertilizer: panicle fertilizer=3:1:6) promotes the enhancement of the overall taste value and provides theoretical information for the production of rice with high quality.

5.
Front Plant Sci ; 14: 1240238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692439

RESUMO

Introduction: Controlled-release fertilizers effectively improve crop yield and nitrogen use efficiency (NUE). However, their use increases the cost of crop production. Optimal management modes involving urea replacement with controlled-release N fertilizers to increase rice yield through enhanced NUE are not widely explored. Methods: Field experiments were conducted from 2017 to 2018 to determine the effects of different controlled-release N fertilizers combined with urea [urea-N (180 kg ha-1, N1)]. We used controlled-release N (150 kg ha-1, N2) as the base, and four controlled-release N and urea-N ratio treatments [(80%:0% (N3), 60%:20% (N4), 40%:40% (N5), or 20%:60% (N6) as the base with 20% urea-N as topdressing at the panicle initiation stage under 150 kg ha-1] to study their impact on the grain yield and NUE of machine-transplanted rice. Results and discussion: Grain yield and NUE were positively correlated with increases in photosynthetic production, flag leaf net photosynthetic rate (Pn), root activity, N transport, and grain-filling characteristics. The photosynthetic potential and population growth rate from the jointing to the full-heading stage, highly effective leaf area index (LAI) rate and Pn at the full-heading stage, root activity at 15 d after the full-heading stage, and N transport in the leaves from the full-heading to mature stage were significantly increased by the N4 treatment, thereby increasing both grain yield and NUE. Furthermore, compared with the other N treatments, the N4 treatment promoted the mean filling rate of inferior grains, which is closely related to increased filled grains per spikelet and filled grains rate. These effects ultimately improved the grain yield (5.03-25.75%), N agronomic efficiency (NAE, 3.96-17.58%), and N partial factor productivity (NPP, 3.98-27.13%) under the N4 treatment. Thus, the N4 treatment with controlled-release N (60%) and urea-N (20%) as a base and urea-N (20%) as topdressing at the panicle-initiation stage proved effective in improving the grain yield and NUE of machine-transplanted hybrid indica rice. These findings offer a theoretical and practical basis for enhancing rice grain yield, NUE, and saving the cost of fertilizer.

6.
Sci Total Environ ; 904: 166325, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591401

RESUMO

The challenge in China is to retain high yields while lowering greenhouse gas (GHG) emissions in the context of the increasing global and Chinese demand for rice yield. Better fertilizer management is a key factor that favors intensive rice systems toward more intensive, diverse, and sustainable development to obtain higher yield and environmental benefits. Thus, we used a data-intensive approach to estimate yield, fertilizer productivity (FP) and GHG emissions based on fertilizer and soil characteristics across major Chinese rice-producing regions. The common rice production model showed medium yield, low emission intensity and FP, and low or high GHG emissions. Approximate 41 % and 10 %, 34 % and 3 %, 8 % and 2 %, and 8 % and 1 % probabilities for medium and high yield (MY and HY)-low emission intensity (LI)-low GHG emissions (LG)-high FP (HF) (MY-LI-LG-HF and HY-LI-LG-HF) were achieved in Northeast, South, Southwest, Central and East China, respectively, by adjusting basal, tillering and panicle fertilization and soil pH, N, P and K. Our results provide insights for adjusting soil nutrient traits and fertilizer inputs according to regional production potentials for higher yields and FP and lower GHG emissions in China.

7.
J Sci Food Agric ; 103(14): 7302-7313, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37499162

RESUMO

BACKGROUND: Chalkiness in rice reduces its market value and affects consumer acceptance. Research on the mechanism of chalkiness formation has focused primarily on the activity of key enzymes of carbon metabolism and starch accumulation. The relationship between the formation of chalkiness induced by N fertilizer and rice starch's multi-level structure and thermal properties still needs to be fully elucidated. RESULTS: In this study, the rates of chalky grains and degree of chalkiness decreased with the increase in N fertilizer dosage. This was attributed to an increased proportion of short chains, ordered structure carbon chains, small starch granules, and branched starches, and a higher degree of crystallinity and ΔHg in protein, and a decreased proportion of amylose, large starch granules, and weighted average diameter of starch granule surface area and volume. Application of N fertilizer promoted an increased proportion of short-branched chain amylopectin to develop a more ordered carbohydrate structure and crystalline lamella. These effects enhanced the normal development and compactness of starch granules in grains, and improved their arrangement morphology, thereby reducing the chalkiness in rice. CONCLUSION: These changes in starch multi-level structure and protein improve the physicochemical characteristics of starch and enhance the fullness, crystallinity and compactness of starch granules, while synergistically increasing the regularity and homogeneity of starch granules and thus optimizing the stacking pattern of starch granules, leading to a reduction in rice chalkiness under nitrogen fertilization and thus improving the appearance of rice. © 2023 Society of Chemical Industry.

8.
Front Plant Sci ; 13: 921130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812970

RESUMO

Chalkiness, which is highly affected by nitrogen (N) management during grain filling, is critical in determining rice appearance quality and consumer acceptability. We investigated the effects of N application rates 75 (N1), 150 (N2), and 225 (N3) kg ha-1 on the source-sink carbohydrate accumulation and grain filling characteristics of two indica hybrid rice cultivars with different chalkiness levels in 2019 and 2020. We further explored the relationship between grain filling and formation of chalkiness in superior and inferior grains. In this study, carbohydrates in the functional leaves and grains of the two varieties, and grain filling parameters, could explain 66.2%, 68.0%, 88.7%, and 91.6% of the total variation of total chalky grain rate and whole chalkiness degree, respectively. They were primarily concentrated in the inferior grains. As the N fertilizer application rate increased, the chalky grain rate and chalkiness degree of both the superior and inferior grains decreased significantly. This interfered with the increase in total chalky grain rate and chalkiness. Moreover, the carbohydrate content in the functional leaves increased significantly in N2 and N3 compared with that in N1. The transfer of soluble sugar from the leaves to the grains decreased the soluble sugar and increased total starch contents, accelerated the development of grain length and width, increased grain water content, and effectively alleviated the contradiction between source and sink. These changes promoted the carbohydrate partition in superior and inferior grains, improved their average filling rate in the middle and later stages, optimized the uniformity of inferior grain fillings, and finally led to the overall reduction in rice chalkiness.

9.
Front Plant Sci ; 13: 903643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712565

RESUMO

Estimating the aboveground biomass (AGB) of rice using remotely sensed data is critical for reflecting growth status, predicting grain yield, and indicating carbon stocks in agroecosystems. A combination of multisource remotely sensed data has great potential for providing complementary datasets, improving estimation accuracy, and strengthening precision agricultural insights. Here, we explored the potential to estimate rice AGB by using a combination of spectral vegetation indices and wavelet features (spectral parameters) derived from canopy spectral reflectance and texture features and texture indices (texture parameters) derived from unmanned aerial vehicle (UAV) RGB imagery. This study aimed to evaluate the performance of the combined spectral and texture parameters and improve rice AGB estimation. Correlation analysis was performed to select the potential variables to establish the linear and quadratic regression models. Multivariate analysis (multiple stepwise regression, MSR; partial least square, PLS) and machine learning (random forest, RF) were used to evaluate the estimation performance of spectral parameters, texture parameters, and their combination for rice AGB. The results showed that spectral parameters had better linear and quadratic relationships with AGB than texture parameters. For the multivariate analysis and machine learning algorithm, the MSR, PLS, and RF regression models fitted with spectral parameters (R2 values of 0.793, 0.795, and 0.808 for MSR, PLS, and RF, respectively) were more accurate than those fitted with texture parameters (R2 values of 0.540, 0.555, and 0.485 for MSR, PLS, and RF, respectively). The MSR, PLS, and RF regression models fitted with a combination of spectral and texture parameters (R2 values of 0.809, 0.810, and 0.805, respectively) slightly improved the estimation accuracy of AGB over the use of spectral parameters or texture parameters alone. Additionally, the bior1.3 of wavelet features at 947 nm and scale 2 was used to predict the grain yield and had good accuracy for the quadratic regression model. Therefore, the combined use of canopy spectral reflectance and texture information has great potential for improving the estimation accuracy of rice AGB, which is helpful for rice productivity prediction. Combining multisource remotely sensed data from the ground and UAV technology provides new solutions and ideas for rice biomass acquisition.

10.
Food Chem ; 373(Pt B): 131472, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34740046

RESUMO

A field experiment was conducted to explore the effects of cultivars under flooding irrigation and dry cultivation (D) on starch, fatty acids, and amino acids metabolism, starch physicochemical traits, and pasting properties of rice flour. In this study, high-quality cultivar (HH) had better pasting properties among all other cultivars in D treatment. DHH supported higher short-branch chain amylopectin to develop the crystalline regions. Besides, DHH increased C16:0, C16:1, C18:1, C18:2, glutamate, aspartate, lysine, and threonine, and reduced glutelin and prolamine levels in head rice. Higher pasting properties in DHH was also supported by higher CO in esters and ketones, CO in carboxylic acid, esters, alcohols, and ethers, OH in alcohols before pasting and lower CO and CO in carboxylic acid, CO in aldehydes, and CO, CO and OH in carboxylic acid after pasting. Overall, these findings improve pasting properties to maintain a higher cooking quality in dry cultivation.


Assuntos
Oryza , Amido , Aminoácidos , Amilopectina , Amilose , Ácidos Graxos
11.
Food Res Int ; 150(Pt A): 110764, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865781

RESUMO

A field experiment was conducted to explore the impact on rice quality using high-quality (HH) or drought-resistant (HY) cultivars under flooding irrigation (F) or dry cultivation (D) in ratooning rice system by evaluating the metabolism or physicochemical traits of starch, fatty acids, and amino acids affecting grain quality. Compared to FHY and DHY in the main or ratoon season, DHH in ratoon season (DHHR) exhibited a higher appearance and processing quality but lower cooking quality. DHHR mainly synthesized long branch chain amylopectin to construct the crystalline regions with increased crystallinity, crystallites size, interplanar spacing, dislocation density, Asp and Thr in brown and head rice. Also, it accumulated more of C16:0, C18:0, C18:1, C18:2, and C18:3 but reduced glutelin in head rice. An increase in functional groups and diversity was seen in brown and head rice, respectively. Overall, these traits improved the processing, appearance, and pasting quality of DHHR.


Assuntos
Oryza , Aminoácidos , Amilopectina , Farinha , Amido
12.
Carbohydr Polym ; 269: 118336, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294346

RESUMO

A pot experiment was conducted to explore the effects of high-quality (Huanghuazhan, HH), drought-resistant (IR, IRAT109) and drought-susceptible cultivars (ZS, Zhenshan97) under flooding irrigation and dry cultivation (D) on the starch accumulation and synthesis, physicochemical traits of starch granules and rice grain quality at the upper (U) and lower panicle. Under D treatment, IR and ZS had lower rice quality, especially the appearance and cooking quality. DHH-U had the highest appearance, nutritional and cooking quality among all cultivars under D treatment, which could be ascribed to the synthesis of more short-branch chain amylopectin and correspondingly higher starch granule tightness. DHH-U also maintained ordered carbohydrate structure, crystalline regions, and many hydrophilic and hydrophobic functional groups in starch granules before pasting. It could prevent the polymerization of small molecules to avoid the formation of macromolecules after pasting. Overall, these findings may facilitate the improvement of grain quality in rice dry cultivation.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Amido/biossíntese , Irrigação Agrícola/métodos , Secas , Grão Comestível/metabolismo , Farinha , Qualidade dos Alimentos , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo , Oryza/metabolismo , Amido/química
13.
Sci Total Environ ; 757: 143748, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33267994

RESUMO

Currently, numerous challenges such as excessive irrigation water consumption, labor shortage, lower economic and environmental benefits pose serious threats to rice cultivation systems. Therefore, more water- and labor-efficient irrigation technologies are needed in rice production for minimal environmental hazards and greater economic benefits. After the screening experiment of water-saving cultivation technologies and cultivars, a two-year field experiment was conducted to further explore the effects of efficient water-saving technologies and rice cultivars on the comprehensive benefits, global warming potential (GWP), grain yield, economic benefits, water productivity, nitrogen partial factor productivity, radiation, accumulated temperature and energy use efficiency (EUE) of a rice-wheat rotation system. Conventional flooding irrigation (F), intermittent irrigation (IR), transplanting rainfed (TR) and rice dry cultivation (D) were implemented with two rice cultivars, including Hanyou73 (HY) and Huanghuazhan (HH). After rice harvest, a winter wheat cultivar (Huamai 2566) was planted with traditional methods. The system of rice dry cultivation and wheat rotation had higher comprehensive benefits, which were attributed to greater water productivity, economic benefits and EUE and lower GWP, especially in the rice growing season. D treatment enhanced the comprehensive and economic benefits by 2.5% and 26.8%, 1.6% and 11.3%, 3.3% and 0.6%, and reduced the GWP by 3.4%, 56.7% and 30.2% compared with F, IR and TR treatments in the rotation system, respectively. During the rice season, D treatment significantly (P < 0.05) increased the economic benefits, water productivity and EUE, but slight decreased the grain yield than other treatments. Overall, rice dry cultivation (especially with the HY cultivar) can achieve higher comprehensive benefits in rice growing season as well as in the whole rotation system.

14.
Food Chem ; 326: 126845, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32438226

RESUMO

Dry cultivation of high-yielding or drought-resistant rice cultivars relieves the current pressure on rice cultivation systems. However, the metabolites and metabolic pathways that affect rice quality in high-yield or drought-resistant rice cultivars under dry cultivation have not yet been explored. A field experiment was conducted in 2017 to explore the effects of flooding irrigation (F) and dry cultivation (D) of high-yield and -quality cultivars (Huanghuazhan, HH; Yueyou9113, YY) and a drought-resistant cultivar (Hanyou73, HY) on rice quality traits using metabolomic analysis. Treatment DHH maintained higher head rice yield, amylose content, protein content, and breakdown values and a lower whiteness index and setback value than other cultivars under dry cultivation. These rice quality traits were related to 16 metabolites and 8 metabolic pathways. DHH showed decreases in stress response metabolites (m72, m98, m127, m165, m167, m213, m297, and m298) but maintained stress resistance (m29, m30, m39, m48, and m58) and sucrose (m150) accumulation in grains to support head rice yields and a low whiteness index. Raising the lactose, choline, and nicotinoylcholine levels in rice grains improved their protein content and cooking quality. DHH also adjusted the glycine, serine and threonine metabolism, galactose metabolism, and starch and sucrose metabolism of rice. This affected the biosynthesis of anthocyanin, phenylpropanoid, and flavonoid, supporting protein biosynthesis and starch accumulation in the endosperm. These findings provide further possibilities for improving rice quality traits of high-yield and -quality rice cultivars under dry cultivation.


Assuntos
Grão Comestível/metabolismo , Oryza/metabolismo , Amilose/metabolismo , Culinária , Secas , Endosperma/metabolismo , Metabolômica , Amido/metabolismo
15.
Front Plant Sci ; 9: 173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497435

RESUMO

Limitations of soil water and nitrogen (N) are factors which cause a substantial reduction in cotton (Gossypium hirsutum L.) yield, especially in an arid environment. Suitable management decisions like irrigation method and nitrogen fertilization are the key yield improvement technologies in cotton production systems. Therefore, we hypothesized that optimal water-N supply can increase cotton plant biomass accumulation by maintaining leaf photosynthetic capacity and improving root growth. An outdoor polyvinyl chloride (PVC) tube study was conducted to investigate the effects of two water-N application depths, i.e., 20 cm (H20) or 40 cm (H40) from soil surface and four water-N combinations [deficit irrigation (W55) and no N (N0) (W55N0), W55 and moderate N (N1) (W55N1), moderate irrigation (W75) and N0 (W75N0), W75N1] on the roots growth, leaf photosynthetic traits and dry mass accumulation of cotton crops. H20W55N1 combination increased total dry mass production by 29-82% and reproductive organs biomass by 47-101% compared with other counterparts. Root protective enzyme and nitrate reductase (NR) activity, potential quantum yield of photosystem (PS) II (Fv/Fm), PSII quantum yield in the light [Y(II)] and electron transport rate of PSII were significantly higher in H20W55N1 prior to 82 days after emergence. Root NR activity and protective enzyme were significantly correlated with chlorophyll, Fv/Fm, Y(II) and stomatal conductance. Hence, shallow irrigation (20 cm) with moderate irrigation and N-fertilization application could increase cotton root NR activity and protective enzyme leading to enhance light capture and photochemical energy conversion of PSII before the full flowering stage. This enhanced photoassimilate to reproductive organs.

16.
Sci Rep ; 7(1): 17168, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215075

RESUMO

Cotton is a major cash crop grown worldwide primarily for fiber and oil seed. As the most important cultural practices for cotton production, single pre-plant irrigation and basal fertilization for cotton plant growth and yield are well documented, but their coupling effects are poorly understood in arid regions. A 2-year outdoor pot trial was conducted to unravel the effects of pre-plant irrigation and basal fertilization on leaf area, root growth, biomass accumulation, and capacity of leaf area and root in cotton plant. Two pre-plant irrigations (i.e., W80, well-watered and W0, not watered) and two basal dressing fertilizations (F10, surface application and F30, deep application) were used in the experiments. The aboveground and reproductive biomass were highest in W80F10 after 69 days after emergence. Furthermore, W80F10 increased the root length in the 0-40 cm soil layer and the leaf area and improved the loading boll capacity of the effective root length and leaf area. The effective root length and leaf area had substantial direct effects on the aboveground and root biomass, respectively. Our data suggest that basal fertilizer surface application under adequate pre-plant irrigation is an effective strategy for optimal cotton production, which improves the coordination of water-nutrient absorption and photosynthetic areas and promotes assimilated distribution to the reproductive structures.


Assuntos
Irrigação Agrícola/métodos , Biomassa , Fertilizantes , Gossypium/crescimento & desenvolvimento , Desenvolvimento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fotossíntese , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...