Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39194549

RESUMO

The soil of urban green spaces is severely degraded due to human activities during urbanization, and it is crucial to investigate effective measures that can restore the ecological functions of the soil. This study investigated the effects of plant growth promoting bacteria (Bacillus clausii) and Fe-modified biochar on soil fertility increases and mechanisms of carbon sequestration. Additionally, the effects on C-cycling-related enzyme activity and the bacterial community were also explored. Six treatments included no biochar or Bacillus clausii suspension added (CK), only Bacillus clausii suspension (BC), only biochar (B), only Fe-modified biochar (FeB), biochar combined with Bacillus clausii (BBC), and Fe-modified biochar combined with Bacillus clausii (FeBBC). Compared with other treatments, the FeBBC treatment significantly decreased soil pH, alleviated soil alkalization, and increased the alkali-hydro nitrogen content in the soil. Compared to the individual application of FeB and BC, the FeBBC treatment significantly improved aggregates' stability and positively improved soil fertility and ecological function. Additionally, compared to the individual application of FeB and BC, the soil organic carbon (SOC), particulate organic carbon (POC), and soil inorganic carbon (SIC) contents for the FeBBC-treated soil increased by 28.46~113.52%, 66.99~434.72%, and 7.34~10.04%, respectively. In the FeBBC treatment, FeB can improve soil physicochemical properties and provide bacterial attachment sites, increase the abundance and diversity of bacterial communities, and promote the uniform distribution of carbon-related bacteria in the soil. Compared to a single ecological restoration method, FeBBC treatment can improve soil fertility and carbon sequestration, providing important reference values for urban green space soil ecological restoration.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36399308

RESUMO

Salinity greatly affects the microbial degradation process of crude oil; thus, the isolation and identification of halotolerant microbes is essential. Limited studies explored how microbes respond to increased salinity. In this study, an oil-degrading bacterium Priestia megaterium FDU301 was isolated from the Dagang oil field, which can tolerate a salinity of 6%. Compared to the non-saline condition, oil degradation ratios by P. megaterium FDU301 increased by 15.27% and 11.26% in 0.5% and 3.5% salinity media, respectively. Meanwhile, bacteria degraded various components of crude oil more thoroughly in saline environments, especially mid-chain hydrocarbons (C11-C18). Surface tension under salt stress was lower than that in the non-saline medium, indicating that the amount of biosurfactants produced by bacteria was increased. The microbial activity enhanced markedly in response to increased salinity, which was the main factor for the high degradation ability. As a vital component of biofilms, the production of polysaccharides was accelerated with P. megaterium FDU301 inoculation in saline environments. These results indicate that P. megaterium FDU301 has great potential application in oil bioremediation in saline environments.

3.
Environ Pollut ; 311: 119970, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35995289

RESUMO

Microbial remediation is a potential remediation method for petroleum-contaminated soil. In order to explore the petroleum degradation mechanism by microorganisms, the oilfield soil was remedied by Acinetobacter baumannii combined with Talaromyces sp. The degradation mechanism was studied by analyzing soil microbial community and functional genes through metagenomics during the degradation process. The result showed the degradation rate of petroleum was 65.6% after 28 days. The concentration of petroleum decreased from 1220 mg/kg to 420 mg/kg. In the co-culture group, Acinetobacter baumannii became the dominant species, the annotated genes of it at the species level accounted for 7.34% while that of Talaromyces sp. accounted for only 0.34%. Meanwhile, the annotated genes of Bacillus, Halomonas, and Nitriliruptor at the genus level were up-regulated by 1.83%, 0.90%, and 0.71%, respectively. In addition, large functional genes were significantly up-regulated, including the peroxisome, P450 enzyme (CYP53, CYP116, CYP102, CYP645), and biofilm formulation, promoting the oxidation and hydroxylation, and catalyzing the epoxidation of aromatic and aliphatic hydrocarbons. Meanwhile, the degrading genes of alkanes and aromatic hydrocarbons were expressed promotionally, and degradation pathways were deduced. In conclusion, the inoculation of Acinetobacter baumannii combined with Talaromyces sp. accelerated the degradation of petroleum in oilfield soil and improved the growth of indigenous petroleum-degrading bacteria. Many functional genes related to petroleum degradation were promoted significantly. These results proved the co-culture of bacteria-fungi consortium contributes to the bioremediation of petroleum-contaminated soil.


Assuntos
Acinetobacter baumannii , Petróleo , Poluentes do Solo , Talaromyces , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Metagenômica , Petróleo/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Talaromyces/genética , Talaromyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA