Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 101(41): e30739, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36254054

RESUMO

BACKGROUND: Percutaneous coronary intervention (PCI), the most common method in treating coronary artery disease (CAD), has a variety of side effects. Yiqi Huoxue therapy (YQHX) can effectively alleviate the symptoms of patients and reduce the side effects. However, a reliable and systematic assessment of the methodologies is not available. METHODS: Seven electronic databases were searched to identify randomized controlled trials of YQHX method for CAD after PCI. The quality assessment of the trials included was performed by employing the Cochrane Risk of Bias tool. RESULTS: One thousand eight hundred sixty-eight patients from 23 randomized controlled trials were included in this review. The aggregated results showed that the experimental group got better effect in increasing ORR, TCMSRR, ECG, HDL-C, and in lowering the level of CRP, TC, and MACE in comparison with the control group. CONCLUSION: YQHX method is a valid complementary and alternative therapy in the management of CAD after PCI, and is an effective and safe therapy for CAD.


Assuntos
Doença da Artéria Coronariana , Intervenção Coronária Percutânea , Humanos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/tratamento farmacológico , Intervenção Coronária Percutânea/métodos , Projetos de Pesquisa , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
PeerJ ; 10: e13513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694381

RESUMO

During electrospinning, the fibers deposited on the collector are usually randomly oriented in a disordered form. Researchers hope to generate periodic structures to expand the application of electrospinning, including improving the sensing properties of electronic and photonic devices, improving the mechanical properties of solid polymer composites and directional growth of human tissues. Here, we propose a technique to control the preparation of aligned foodborne nanofibers by placing dielectric polymers on microfluidic devices, which does not require the use of metal collectors. This study was conducted by introduced PEDOT:PSS polymer as a ground collector to prepare aligned foodborne nanofibers directly on the microfluidic platform. The fluidity of the electrolytic polymer collector makes it possible to shape the grounding collector according to the shape of the microcavity, thus forming a space adjustable nanofiber membrane with a controllable body. The simplicity of dismantling the collector also enables it extremely simple to obtain a complete electrospun fiber membrane without any additional steps. In addition, nanofibers can be easily stacked into a multi-layer structure with controllable hierarchical structures. The Caco-2 cells that grow on the device formed a compact intestinal epithelial layer that continuously expresses the tightly bound protein ZO-1. This intestinal barrier, which selectively filters small molecules, has a higher level of TEER, reproducing intestinal filtration functions similar to those of in vivo models. This method provides new opportunities for the design and manufacture of various tissue scaffolds, photonic and electronic sensors.


Assuntos
Nanofibras , Humanos , Nanofibras/química , Células CACO-2 , Microfluídica , Alicerces Teciduais/química , Polímeros/química
3.
Biosci Rep ; 41(7)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34269374

RESUMO

A microfluidic array was constructed for trapping single cell and loading identical dynamic biochemical stimulation for gain a better understanding of Ca2+ signaling at single cell resolution in the present study. This microfluidic array consists of multiple radially aligned flow channels with equal intersection angles, which was designed by a combination of stagnation point flow and physical barrier. Numerical simulation results and trajectory analysis have shown the effectiveness of this single cell trapping device. Fluorescent experiment results demonstrated the effects of flow rate and frequency of dynamic stimulus on the profiles of biochemical concentration which exposed on captured cells. In this microarray, the captured single cells in each trapping channels were able to receive identical extracellular dynamic biochemical stimuli which being transmitted from the entrance in the middle of the microfluidic array. Besides, after loading dynamic Adenosine Triphosphate (ATP) stimulation on captured cells by this device, consistent average intracellular Ca2+ dynamics phase and cellular heterogeneity were observed in captured single K562 cells. Furthermore, this device is able to be used for investigating cellular respond on single cell resolution to temporally varying environments by modulating the stimulation signal in terms of concentration, pattern, and duration of exposure.


Assuntos
Trifosfato de Adenosina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Célula Única , Simulação por Computador , Humanos , Células K562 , Cinética , Microscopia de Fluorescência , Modelos Biológicos , Análise Numérica Assistida por Computador
4.
Micromachines (Basel) ; 11(4)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260191

RESUMO

Organ-on-a-chip academic research is in its blossom. Drug toxicity evaluation is a promising area in which organ-on-a-chip technology can apply. A unique advantage of organ-on-a-chip is the ability to integrate drug metabolism and drug toxic processes in a single device, which facilitates evaluation of toxicity of drug metabolites. Human organ-on-a-chip has been fabricated and used to assess drug toxicity with data correlation with the clinical trial. In this review, we introduced the microfluidic chip models of liver, kidney, heart, nerve, and other organs and multiple organs, highlighting the application of these models in drug toxicity detection. Some biomarkers of toxic injury that have been used in organ chip platforms or have potential for use on organ chip platforms are summarized. Finally, we discussed the goals and future directions for drug toxicity evaluation based on organ-on-a-chip technology.

5.
Anal Chim Acta ; 1106: 61-70, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32145856

RESUMO

Analysis of C.elegans by droplet microfluidics has been widely used in study of locomotive behavior responses to neurotoxicity due to the capacity of high-throughput manipulating single cells. However, it has been difficult to manipulate droplets flexibly and actively on account of the limitation of the dimension of individual C. elegans droplets. In this study, a novel MiDMS (Micro-injection Droplet Microfluidic System) was proposed, which consisted of three parts: single C. elegans droplet generator, droplets drug micro-injection channels and drug-incubation observation array. Individual C.elegans droplets were produced initially by regulating the flow rates between oil and water phase as well as the concentration of C.elegans in suspension. Then, the drug solution was precisely injected into each C.elegans droplet, which by electricity induced surface tension of droplet changing. In addition, the effect of neurotoxic Cu2+ on locomotive behavior of C. elegans was evaluated at single cell resolution. The results showed that the neurotoxicity induced behavioral disorder of the C. elegans was more obvious with the increase of Cu2+ concentration or treatment time, and these dose-effect and time-effect relationship in MiDMS were similar as in petri dish. This study will provide a powerful platform for the study of the response of C. elegans to quantitative drug at single cell resolution.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Cobre/toxicidade , Técnicas Analíticas Microfluídicas , Microinjeções , Neurotoxinas/toxicidade , Animais , Caenorhabditis elegans/metabolismo , Cobre/análise , Relação Dose-Resposta a Droga , Neurotoxinas/análise , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo
6.
Artigo em Inglês | MEDLINE | ID: mdl-31827565

RESUMO

OBJECTIVE: To investigate the potential active compounds and underlying mechanisms of Paeonia lactiflora Pall. (PLP) on the treatment of Alzheimer's disease (AD) based on network pharmacology. METHODS: The active components of PLP were collected from Traditional Chinese Medicine System Pharmacology (TCMSP) database, and their possible target proteins were predicted using TCMSP, SwissTargetPrediction, and STITCH databases. The putative AD-related target proteins were identified from Therapeutic Target Database (TTD), GeneCards, and MalaCards database. The compound-target-disease network interactions were established to obtain the key targets about PLP acting on AD by network topology analysis. Then, the function annotation and signaling pathways of key targets were performed by GO and KEGG enrichment analysis using DAVID tools. Finally, the binding capacity between active ingredients and key targets was validated by molecular docking using SystemsDock tools. RESULTS: There were 7 active compounds involving in 151 predicted targets identified in PLP. Besides, a total of 160 AD-related targets were identified. Among these targets, 30 shared targets of PLP and AD were acquired. After topological analysis of the PLP potential target-AD target network, 33 key targets that were highly responsible for the therapeutic effects of PLP on AD were obtained. Further GO and KEGG enrichment analysis showed that these key targets were significantly involved in multiple biological processes and pathways which participated in cell apoptosis and inflammatory response and maintained the function of neurons to accomplish the anti-AD activity. The molecular docking analysis verified that the 7 active compounds had definite affinity with the key targets. CONCLUSIONS: The ameliorative effects of PLP on AD were predicted to be associated with regulating neural cell apoptosis, inflammatory response, and neurotrophy via various pathways such as PI3K-Akt signaling pathway, MAPK signaling pathway, and neurotrophin signaling pathway.

7.
Micromachines (Basel) ; 10(10)2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591365

RESUMO

Hepatology and drug development for liver diseases require in vitro liver models. Typical models include 2D planar primary hepatocytes, hepatocyte spheroids, hepatocyte organoids, and liver-on-a-chip. Liver-on-a-chip has emerged as the mainstream model for drug development because it recapitulates the liver microenvironment and has good assay robustness such as reproducibility. Liver-on-a-chip with human primary cells can potentially correlate clinical testing. Liver-on-a-chip can not only predict drug hepatotoxicity and drug metabolism, but also connect other artificial organs on the chip for a human-on-a-chip, which can reflect the overall effect of a drug. Engineering an effective liver-on-a-chip device requires knowledge of multiple disciplines including chemistry, fluidic mechanics, cell biology, electrics, and optics. This review first introduces the physiological microenvironments in the liver, especially the cell composition and its specialized roles, and then summarizes the strategies to build a liver-on-a-chip via microfluidic technologies and its biomedical applications. In addition, the latest advancements of liver-on-a-chip technologies are discussed, which serve as a basis for further liver-on-a-chip research.

8.
Biomed Microdevices ; 21(3): 57, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222452

RESUMO

Non-parenchymal cells play a key role in the occurrence and development of alcoholic liver disease. However, this cellular behaviour has not been fully characterized, and it is inconvenient to observe in traditional in vitro alcoholic liver disease (ALD) models and animal models. Herein we developed a demountable liver-on-chip device for investigation of pathophysiological process of individual non-parenchymal cells in alcohol induced ALD. This liver-device comprised of HepG2, LX-2, EAhy926 and U937 cells, which were ordered in a physiological distribution under perfuse. This device allows improved HepG2 cells activities and maintained high liver functions which including albumin synthesis and urea secretion. This novel liver-device is able to recreate the damage process of hepatic non-parenchymal cell lines induced by alcohol, and to understand the intercellular communication between different types of hepatic cells during ALD by measuring multiple biomarkers of each types of hepatic non-parenchymal cell lines, including Ve-cadherin, eNOS, VEGF and α-SMA. The proposed liver-device is able to further studies of pathological analysis and drug- and toxicity-screening.


Assuntos
Hepatopatias Alcoólicas/patologia , Fígado/patologia , Análise Serial de Tecidos/instrumentação , Biomarcadores/metabolismo , Linhagem Celular , Humanos , Fígado/metabolismo
9.
Biomicrofluidics ; 13(2): 024101, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31040885

RESUMO

The poor metabolic ability of cell lines fails to meet the requirements of an in vitro model for drug interaction testing which is crucial for the development or clinical application of drugs. Herein, we describe a liver sinusoid-on-a-chip device composed of four kinds of transformed cell lines (HepG2 cells, LX-2 cells, EAhy926 cells, and U937 cells) that were ordered in a physiological distribution with artificial liver blood flow and biliary efflux flowing in the opposite direction. This microfluidic device applied three-dimensional culturing of HepG2 cells with high density (107 ml-1), forming a tightly connected monolayer of EAhy926 cells and achieving the active transport of drugs in HepG2 cells. Results showed that the device maintained synthetic and secretory functions, preserved cytochrome P450 1A1/2 and uridine diphosphate glucuronyltransferase enzymatic activities, as well as sensitivity of drug metabolism. The cell lines derived device enables the investigation of a drug-drug interaction study. We used it to test the hepatotoxicity of acetaminophen and the following combinations: "acetaminophen + rifampicin," "acetaminophen + omeprazole," and "acetaminophen + ciprofloxacin." The variations in hepatotoxicity of the combinations compared to acetaminophen alone, which is not found in a 96-well plate model, in the device were -17.15%, 14.88%, and -19.74%. In addition, this result was similar to the one tested by the classical primary hepatocyte plate model (-13.22%, 13.51%, and -15.81%). Thus, this cell lines derived liver model provides an alternative to investigate drug hepatotoxicity, drug-drug interaction.

10.
Biomech Model Mechanobiol ; 18(1): 189-202, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30187350

RESUMO

Intracellular calcium dynamics plays an important role in the regulation of vascular endothelial cellular functions. In order to probe the intracellular calcium dynamic response under synergistic effect of wall shear stress (WSS) and adenosine triphosphate (ATP) signals, a novel microfluidic device, which provides the adherent vascular endothelial cells (VECs) on the bottom of microchannel with WSS signal alone, ATP signal alone, and different combinations of WSS and ATP signals, is proposed based upon the principles of fluid mechanics and mass transfer. The spatiotemporal profiles of extracellular ATP signals from numerical simulation and experiment studies validate the implementation of our design. The intracellular calcium dynamics of VECs in response to either WSS signal or ATP signal alone, and different combinations of WSS and ATP signals have been investigated. It is found that the synergistic effect of the WSS and ATP signals plays a more significant role in the signal transduction of VECs rather than that from either WSS signal or ATP signal alone. In particular, under the combined stimuli of WSS and ATP signals with different amplitudes and frequencies, the amplitudes and frequencies of the intracellular Ca2+ dynamic signals are observed to be closely related to the amplitudes and frequencies of WSS or ATP signals.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Espaço Intracelular/metabolismo , Microfluídica/instrumentação , Estresse Mecânico , Simulação por Computador , Humanos , Análise Numérica Assistida por Computador , Fatores de Tempo
11.
Micromachines (Basel) ; 9(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30424403

RESUMO

Carcinoembryonic antigen (CEA) is a broad-spectrum tumor marker used in clinical applications. The primarily clinical method for measuring CEA is based on chemiluminescence in serum during enzyme-linked immunosorbent assays (ELISA) in 96-well plates. However, this multi-step process requires large and expensive instruments, and takes a long time. In this study, a high-throughput centrifugal microfluidic device was developed for detecting CEA in serum without the need for cumbersome washing steps normally used in immunoreactions. This centrifugal microdevice contains 14 identical pencil-like units, and the CEA molecules are separated from the bulk serum for subsequent immunofluorescence detection using density gradient centrifugation in each unit simultaneously. To determine the optimal conditions for CEA detection in serum, the effects of the density of the medium, rotation speed, and spin duration were investigated. The measured values from 34 clinical serum samples using this high-throughput centrifugal microfluidic device showed good agreement with the known values (average relative error = 9.22%). These results indicate that the high-throughput centrifugal microfluidic device could provide an alternative approach for replacing the classical method for CEA detection in clinical serum samples.

12.
Micromachines (Basel) ; 7(11)2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30404384

RESUMO

The intracellular calcium dynamics in vascular endothelial cells (VECs) in response to wall shear stress (WSS) and/or adenosine triphosphate (ATP) have been commonly regarded as an important factor in regulating VEC function and behavior including proliferation, migration and apoptosis. However, the effects of time-varying ATP signals have been usually neglected in the past investigations in the field of VEC mechanobiology. In order to investigate the combined effects of WSS and dynamic ATP signals on the intracellular calcium dynamic in VECs, a Y-shaped microfluidic device, which can provide the cultured cells on the bottom of its mixing micro-channel with stimuli of WSS signal alone and different combinations of WSS and ATP signals in one single micro-channel, is proposed. Both numerical simulation and experimental studies verify the feasibility of its application. Cellular experimental results also suggest that a combination of WSS and ATP signals rather than a WSS signal alone might play a more significant role in VEC Ca2+ signal transduction induced by blood flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...