Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.144
Filtrar
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(9): 986-988, 2024.
Artigo em Chinês | MEDLINE | ID: mdl-39267516

RESUMO

Patient 1, a 12-day-old female infant, presented with fever, cough, dyspnea, and elevated infection markers, requiring respiratory support. Metagenomic next-generation sequencing (mNGS) of blood and bronchoalveolar lavage fluid revealed Legionella pneumophila (LP), leading to diagnoses of LP pneumonia and LP sepsis. The patient was treated with erythromycin for 15 days and azithromycin for 5 days, resulting in recovery and discharge. Patient 2, an 11-day-old female infant, presented with dyspnea, fever, elevated infection markers, and multiple organ dysfunction, requiring mechanical ventilation. mNGS of blood and cerebrospinal fluid indicated LP, leading to diagnoses of LP pneumonia, LP sepsis, and LP intracranial infection. The patient was treated with erythromycin for 19 days and was discharged after recovery. Neonatal LP pneumonia lacks specific clinical symptoms, and azithromycin is the preferred antimicrobial agent. The use of mNGS can provide early and definitive diagnosis for severe neonatal pneumonia of unknown origin.


Assuntos
Doença dos Legionários , Humanos , Feminino , Recém-Nascido , Doença dos Legionários/diagnóstico , Doença dos Legionários/tratamento farmacológico
2.
Sensors (Basel) ; 24(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39275631

RESUMO

In recent years, artificial intelligence technology has seen increasingly widespread application in the field of intelligent manufacturing, particularly with deep learning offering novel methods for recognizing geometric shapes with specific features. In traditional CNC machining, computer-aided manufacturing (CAM) typically generates G-code for specific machine tools based on existing models. However, the tool paths for most CNC machines consist of a series of collinear motion commands (G01), which often result in discontinuities in the curvature of adjacent tool paths, leading to machining defects. To address these issues, this paper proposes a method for CNC system machining trajectory feature recognition and path optimization based on intelligent agents. This method employs intelligent agents to construct models and analyze the key geometric information in the G-code generated during CNC machining, and it uses the MCRL deep learning model incorporating linear attention mechanisms and multiple neural networks for recognition and classification. Path optimization is then carried out using mean filtering, Bézier curve fitting, and an improved novel adaptive coati optimization algorithm (NACOA) according to the degree of unsmoothness of the path. The effectiveness of the proposed method is validated through the optimization of process files for gear models, pentagram bosses, and maple leaf models. The research results indicate that the CNC system machining trajectory feature recognition and path optimization method based on intelligent agents can significantly enhance the smoothness of CNC machining paths and reduce machining defects, offering substantial application value.

3.
Int J Biol Macromol ; : 135351, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270890

RESUMO

Pulmonary fibrosis (PF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia, occurring primarily in older adults with poor prognosis. Alveolar epithelial cell (AEC) senescence is the critical pathological mechanism of PF. However, the molecular mechanisms regulating AEC senescence in PF are incompletely understood. Herein, we provided evidence to support the function of Krüppel-like factor 14 (KLF14), a novel Krüppel-like transcription factor, in the regulation of AEC senescence during PF. We confirmed that the expression of KLF14 was up-regulated in PF patients and mice treated with bleomycin (BLM). KLF14 knockdown resulted in more pronounced structural disruption of the lung tissue and swelling of the alveolar septum, which led to significantly increased mortality in BLM-induced PF mice. Mechanistically, RNA-seq analysis indicated that KLF14 decreased the senescence of AECs by inhibiting endoplasmic reticulum (ER) stress. Furthermore, the pharmacological activation of KLF14 conferred protection against PF in mice. In conclusion, our findings reveal a protective role for KLF14 in preventing AECs from senescence and shed light on the development of KLF14-targeted therapeutics for PF.

4.
J Ethnopharmacol ; 337(Pt 1): 118787, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39244173

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cognitive dysfunction associated with diabetes, known as diabetic encephalopathy (DE), is a grave neurodegenerative condition triggered by diabetes, and persistent inflammation plays a vital role in its development. The renowned traditional Chinese medicine Huang-Lian-Jie-Du Decoction (HLJDD) is clinically proven to manage diabetes mellitus and Alzheimer's disease and is famous for its heat-clearing and detoxifying effects. However, the underlying mechanisms through which HLJDD affects DE remain to be elucidated. AIM OF THE STUDY: To explore the beneficial effects of HLJDD on improving cognitive dysfunction in DE mice. STUDY DESIGN AND METHODS: A diabetic mouse was established through a high-fat diet and subsequent administration of streptozotocin over five consecutive days. After the animals were confirmed to have diabetes, they were treated with HLJDD. After oral administration of HLJDD or metformin for 14 weeks, behavioral tests were used to assess their cognitive capacity. Biochemical analyses were then performed to detect levels of glucose metabolism, followed by histological analyses to assess pathological damage. Furthermore, AGEs/RAGE/NF-κB axis related proteins were detected by Western blot or immunofluorescence techniques. An advanced UPLC-Q-Orbitrap HRMS/MS analytical technique utilizing a chemical derivatization strategy was employed for comprehensive metabolic profiling of carbonyl compounds in the plasma of DE mice. RESULTS: Pharmacological assessment revealed that HLJDD effectively mitigated cognitive dysfunction, normalized glucose metabolic imbalances, and repaired neuronal damage in DE mice. It reduced neuroinflammation by attenuating carbonyl stress, deactivating astrocytes and microglia, and preserving dopaminergic neurons. Additionally, metabolomics analysis revealed 18 carbonyl compounds with marked disparities between DE and control mice, with 12 metabolites approaching normal levels post-HLJDD intervention. Further investigations showed that HLJDD regulated inflammation and pyroptosis through suppressing AGEs/RAGE/NF-κB pathways. CONCLUSION: Our study indicated that HLJDD could ameliorate carbonyl stress via the regulation of carbonyl compound metabolism profiling, and inhibiting the AGEs/RAGE/NF-κB pathway, thereby alleviating inflammation and pyroptosis to exert beneficial effects on DE.

5.
J Pediatr Surg ; : 161695, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39256065

RESUMO

BACKGROUND: We describe our experience with single-incision retroperitoneal laparoscopic (SIRL) for resection of adrenal tumors in pediatric patients and discuss the technique's clinical value. METHODS: We retrospectively analyzed clinical data of 27 pediatric patients who underwent SIRL between January 2020 and September 2023. Patients with tumors >5 cm in size and those requiring vascular skeletonization surgery or extensive lymph node dissection were excluded. Demographic, perioperative, and prognostic data were collected, and computed tomography (CT) and magnetic resonance imaging were used for preoperative tumor assessment. RESULTS: Of 27 patients, 16 were male and 11 were female; mean age 54 ± 45 months and mean body mass index 17.2 ± 3.6 kg/m2. Mean tumor length, width, and height were 4.1 ± 1.8 cm, 3.3 ± 2.1 cm, and 2.9 ± 1.7 cm, respectively. One patient experienced a diaphragmatic tear, three patients incurred peritoneal damage, and one patient developed postoperative renal artery injury, leading to thrombosis and renal atrophy. No surgery was converted to open surgery, and no intraoperative or postoperative blood transfusions were required. Operative time, blood loss, and postoperative dietary recovery time were satisfactory. No local recurrence or distant metastases were detected during the 6-48 months of follow-up involving outpatient and telephone assessments. CONCLUSIONS: Application of SIRL in pediatric patients with adrenal tumors achieved favorable clinical outcomes with an effective, minimally invasive surgical option for treating children with adrenal tumors. This technique demands a high level of surgical expertise, specialized instruments and experienced surgeons. Our findings indicate that SIRL is safe and provides significant postoperative benefits in pediatric patients. LEVEL OF EVIDENCE: Level IV.

6.
J Adv Res ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243942

RESUMO

INTRODUCTION: Brain organoids are believed to be able to regenerate impaired neural circuits and reinstate brain functionality. The neuronal activity of organoids is considered a crucial factor for restoring host function after implantation. However, the optimal stage of brain organoid post-transplantation has not yet been established. External electrical signal plays a crucial role in the physiology and development of a majority of human tissues. However, whether electrical input modulates the development of brain organoids, making them ideal transplant donors, is elusive. METHODS: Bioelectricity was input into cortical organoids by electrical stimulation (ES) with a multi-electrode array (MEA) to obtain a better-transplanted candidate with better viability and maturity, realizing structural-functional integration with the host brain. RESULTS: We found that electrical stimulation facilitated the differentiation and maturation of organoids, displaying well-defined cortical plates and robust functional electrophysiology, which was probably mediated via the pathway of calcium-calmodulin (CaM) dependent protein kinase II (CAMK II)-protein kinase A (PKA)-cyclic-AMP response binding protein (pCREB). The ES-pretreated D40 organoids displayed superior cell viability and higher cell maturity, and were selected to transplant into the damaged primary sensory cortex (S1) of host. The enhanced maturation was exhibited within grafts after transplantation, including synapses and complex functional activities. Moreover, structural-functional integration between grafts and host was observed, conducive to strengthening functional connectivity and restoring the function of the host injury. CONCLUSION: Our findings supported that electrical stimulation could promote the development of cortical organoids. ES-pretreated organoids were better transplanted donors for strengthening connectivity between grafts and host. Our work presented a new physical approach to regulating organoids, potentially providing a novel translational strategy for functional recovery after brain injury. In the future, the development of 3D flexible electrodes is anticipated to overcome the drawbacks of 2D planar MEA, promisingly achieving multimodal stimulation and long-term recordings of brain organoids.

8.
Clin Cosmet Investig Dermatol ; 17: 1943-1962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224224

RESUMO

Background: The mechanism underlying skin photoaging remains elusive because of the intricate cellular and molecular changes that contribute to this phenomenon, which have yet to be elucidated. In photoaging, the roles of keratinocytes and fibroblasts are vital for maintaining skin structure and elasticity. But these cells can get photo-induced damage during photoaging, causing skin morphological changes. Recently, the function of natural active ingredients in treating and preventing photoaging has drawn more attention, with researches often focusing on keratinocytes and fibroblasts. Methods: We searched for studies published from 2007 to January 2024 in the Web of Science, PubMed, and ScienceDirect databases through the following keywords: natural plant, natural plant products or phytochemicals, traditional Chinese Medicine or Chinese herbal, plant extracts, solar skin aging, skin photoaging, and skin wrinkling. This review conducted the accordance of Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Results: In total, 87 researches were included in this review (Figure 1). In keratinocytes, natural compounds may primarily regulate signal pathways such as the NF-κB, MAPK, PI3K/AKT, and Nrf2/ARE pathways, reducing inflammation and cellular damage, thus slowing skin photoaging. Additionally, in fibroblasts, natural active ingredients primarily promote the TGF-ß pathway, inhibit MMPs activity, and enhance collagen synthesis while potentially modulating the mTOR pathway, thereby protecting the dermal collagen network and reducing wrinkle formation. Several trials showed that natural compounds that regulate keratinocytes and fibroblasts responses have significant and safe therapeutic effects. Conclusion: The demand for natural product-based ingredients in sunscreen formulations is rising. Natural compounds show promising anti-photoaging effects by targeting cellular pathways in keratinocytes and fibroblasts, providing potential therapeutic strategies. However, comprehensive clinical studies are needed to verify their efficacy and safety in mitigating photoaging, which should use advanced pharmacological methods to uncover the complex anti-photoaging mechanisms of natural compounds.

10.
Diabetes Obes Metab ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39233493

RESUMO

AIM: Diabetic cognitive impairment (DCI), considered one of the most severe and commonly overlooked complications of diabetes, has shown inconsistent findings regarding the metabolic profiles in DCI patients. This systematic review and meta-analysis aimed to identify dysregulated metabolites as potential biomarkers for early DCI, providing valuable insights into the underlying pathophysiological mechanisms. MATERIALS AND METHODS: A systematic search of four databases, namely PubMed, Embase, Web of Science and Cochrane, was conducted up to March 2024. Subsequently, a qualitative review of clinical studies was performed followed by a meta-analysis of metabolite markers. Finally, the sources of heterogeneity were explored through subgroup and sensitivity analyses. RESULTS: A total of 774 unique publications involving 4357 participants and the identification of multiple metabolites were retrieved. Of these, 13 clinical studies reported metabolite differences between the DCI and control groups. Meta-analysis was conducted for six brain metabolites and two metabolite ratios. The results revealed a significant increase in myo-inositol (MI) concentration and decreases in glutamate (Glu), Glx (glutamate and glutamine) and N-acetylaspartate/creatine (NAA/Cr) ratios in DCI, which have been identified as the most sensitive metabolic biomarkers for evaluating DCI progression. Notably, brain metabolic changes associated with cognitive impairment are more pronounced in type 2 diabetes mellitus than in type 1 diabetes mellitus, and the hippocampus emerged as the most sensitive brain region regarding metabolic changes associated with DCI. CONCLUSIONS: Our results suggest that MI, Glu, and Glx concentrations and NAA/Cr ratios within the hippocampus may serve as metabolic biomarkers for patients with early-stage DCI.

11.
Mikrochim Acta ; 191(8): 500, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088046

RESUMO

Detecting lipopolysaccharide (LPS) using electrochemical methods is significant because of their exceptional sensitivity, simplicity, and user-friendliness. Two-dimensional metal-organic framework (2D-MOF) that merges the benefits of MOF and 2D nanostructure has exhibited remarkable performance in constructing electrochemical sensors, notably surpassing traditional 3D-MOFs. In this study, Cu[tetrakis(4-carboxylphenyl)porphyrin] (Cu-TCPP) and Cu(tetrahydroxyquinone) (Cu-THQ) 2D nanosheets were synthesized and applied on a glassy carbon electrode (GCE). The 2D-MOF nanosheets, which serve as supporting layers, exhibit improved electron transfer and electronic conductivity characteristics. Subsequently, the modified electrode was subjected to electrodeposition with Au nanostructures, resulting in the formation of Au/Cu-TCPP/GCE and Au/Cu-THQ/GCE. Notably, the Au/Cu-THQ/GCE demonstrated superior electrochemical activity because of the 2D morphology, redox ligand, dense Cu sites, and improved deposition of flower-like Au nanostructure based on Cu-THQ. The electron transfer specific surface area was increased by the improved deposition of Au nanostructures, which facilitates enriched binding of LPS aptamer and significantly improved the detection performance of Apt/Au/Cu-THQ/GCE electrochemical aptasensor. The limit of detection for LPS reached 0.15 fg/mL with a linear range of 1 fg/mL - 100 pg/mL. The proposed aptasensor demonstrated the ability to detect LPS in serum samples with satisfactory accuracy, indicating significant potential for clinical diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cobre , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Lipopolissacarídeos , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Ouro/química , Cobre/química , Técnicas Eletroquímicas/métodos , Lipopolissacarídeos/análise , Lipopolissacarídeos/sangue , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Eletrodos , Nanoestruturas/química , Porfirinas/química , Humanos
12.
BMC Cancer ; 24(1): 953, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103758

RESUMO

BACKGROUND AND PURPOSE: In the context of the widespread availability of magnetic resonance imaging (MRI) and aggressive salvage irradiation techniques, there has been controversy surrounding the use of prophylactic cranial irradiation (PCI) for small-cell lung cancer (SCLC) patients. This study aimed to explore whether regular brain MRI plus salvage brain irradiation (SBI) is not inferior to PCI in patients with limited-stage SCLC (LS-SCLC). METHODS: This real-world multicenter study, which was conducted between January 2014 and September 2020 at three general hospitals, involved patients with LS-SCLC who had a good response to initial chemoradiotherapy and no brain metastasis confirmed by MRI. Overall survival (OS) was compared between patients who did not receive PCI for various reasons but chose regular MRI surveillance and followed salvage brain irradiation (SBI) when brain metastasis was detected and patients who received PCI. RESULTS: 120 patients met the inclusion criteria. 55 patients received regular brain MRI plus SBI (SBI group) and 65 patients received PCI (PCI group). There was no statistically significant difference in median OS between the two groups (27.14 versus 33.00 months; P = 0.18). In the SBI group, 32 patients underwent whole brain radiotherapy and 23 patients underwent whole brain radiotherapy + simultaneous integrated boost. On multivariate analysis, only extracranial metastasis was independently associated with poor OS in the SBI group. CONCLUSION: The results of this real-world study showed that MRI surveillance plus SBI is not inferior to PCI in OS for LS-SCLC patients who had a good response to initial chemoradiotherapy.


Assuntos
Neoplasias Encefálicas , Irradiação Craniana , Neoplasias Pulmonares , Imageamento por Ressonância Magnética , Terapia de Salvação , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/radioterapia , Carcinoma de Pequenas Células do Pulmão/diagnóstico por imagem , Carcinoma de Pequenas Células do Pulmão/mortalidade , Carcinoma de Pequenas Células do Pulmão/patologia , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Idoso , Irradiação Craniana/métodos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/mortalidade , Estudos Retrospectivos , Estadiamento de Neoplasias , Adulto , Quimiorradioterapia/métodos
13.
Vascular ; : 17085381241273262, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132754

RESUMO

BACKGROUND: This study aimed to analyze the effect of proximal neck angulation on the biomechanical indices of abdominal aortic aneurysms (AAA) and to investigate its impact on the risk of AAA rupture. METHODS: CT angiography (CTA) data of patients with AAA from January 2015 to January 2022 were collected. Patients were divided into three groups based on the angle of the proximal neck: Group A (âˆ ß ≤ 30°), Group B (30°<âˆ ß ≤ 60°), and Group C (âˆ ß > 60°). Biomechanical indices related to the rupture risk of AAA were analyzed using computational fluid dynamics modeling (CFD-Post) based on the collected data. RESULTS: Group A showed slight turbulence in the AAA lumen with a mixed laminar flow pattern. Group B had a regular low-speed eddy line characterized by cross-flow dominated by lumen blood flow and turbulence. In Group C, a few turbulent lines appeared at the proximal neck, accompanied by eddy currents in the lumen expansion area following the AAA shape. Significant differences were found in peak wall stress, shear stress, and the maximum blood flow velocity impact among the three groups. The maximum blood flow velocity at the angle of the proximal neck impact indicated the influence of the proximal neck angle on the blood flow state in the lumen. CONCLUSION: As the angle of the proximal neck increased, it caused stronger eddy currents and turbulent blood flow due to a high-speed area near the neck. The region with the largest diameter in the abdominal aortic aneurysm was prone to the highest stress, indicating a higher risk of rupture. The corner of the proximal neck experienced the greatest shear stress, potentially leading to endothelial injury and further enlargement of the aneurysm.

14.
Inorg Chem ; 63(32): 15197-15205, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39091089

RESUMO

The oxygen reduction/evolution reaction (ORR/OER) represents a pivotal process in metal-air batteries; however, it is constrained by the limitations of slow kinetics. Nevertheless, the creation of long-lasting and bifunctional catalysts represents a significant challenge. This study presents a series of hierarchical porous carbon-supported cobalt pyrophosphate (Co2P2O7-N/C-T) catalysts, prepared through the pyrolysis of porphyrin-based NTU-70 nanosheets with red phosphorus at varying temperatures. The Co2P2O7-N/C-800 not only demonstrates remarkable OER performance with an overpotential of only 290 mV at a current density of 10 mA cm-2 in 1 M KOH, but also exhibits an excellent ΔE of 0.74 V in 0.1 M KOH, which is lower than that of Pt/C + RuO2 (0.76 V). The utilization of Co2P2O7-N/C-800 as an air cathode in a rechargeable Zn-air battery (ZAB) results in a stable discharge voltage plateau of 1.405 V and a high gravimetric energy density of 801.2 mA h gZn-1. This work presents a promising strategy for the design of efficient bifunctional catalysts and demonstrates the critical importance of the interplay between the active center and the supported hierarchical porous carbon.

15.
Heliyon ; 10(15): e34975, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39144956

RESUMO

Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.

16.
Exp Appl Acarol ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150623

RESUMO

The two-spotted spider mite (Tetranychus urticae Koch, TSSM) is recognized as one of the most problematic spider mite pests. However, the precise gene expression patterns across its key developmental stages remain elusive. Here, we performed a comprehensive transcriptome analysis of TSSM eggs, nymphs and adult females using publicly available RNA sequencing (RNA-seq) data to elucidate the overarching transcriptomic differences between these developmental stages. Principal component analysis and hierarchical clustering analysis unveiled distinct separations among samples across different developmental stages, regardless of their Wolbachia infection status. Differential expression analysis revealed 4,089,2,762, and 1,282 core genes specifically enriched in eggs, nymphs, and adults, respectively. KEGG and GO enrichment analyses showed upregulation of genes in eggs are associated with proteolysis, Wnt signaling pathway, DNA transcription, RNA biosynthetic and metabolic processes, as well as protein folding, sorting, and degradation pathways. Meanwhile, nymphs exhibited increased abundance of genes related to chitin/amino sugar metabolic processes, G protein-coupled receptor signaling pathways, monoatomic ion transport, and neurotransmitter transport pathways. Pathways involving sphingolipid and carbohydrate metabolic processes, proteolysis, lipid transport, and localization were particularly enriched in older females. Altogether, our findings suggest that the egg stage exhibits higher activity in cell differentiation processes, the nymph stage is more involved in chitin development, and the adult stage shows increased metabolic and reproductive activity. This study enhances our understanding of the molecular mechanisms underlying TSSM development and paves the way for further research into the intricate physiological processes of TSSM.

17.
Int Immunopharmacol ; 141: 112658, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137625

RESUMO

Atopic dermatitis (AD) and psoriasis are chronic skin diseases with a global impact, posing significant challenges to public health systems and severely affecting patients' quality of life. This review delves into the key role of the gut microbiota in these diseases, emphasizing the importance of the gut-skin axis in inflammatory mediators and immune regulation and revealing a complex bidirectional communication system. We comprehensively assessed the pathogenesis, clinical manifestations, and treatment strategies for AD and psoriasis, with a particular focus on how the gut microbiota and their metabolites influence disease progression via the gut-skin axis. In addition, personalized treatment plans based on individual patient microbiome characteristics have been proposed, offering new perspectives for future treatment approaches. We call for enhanced interdisciplinary cooperation to further explore the interactions between gut microbiota and skin diseases and to assess the potential of drugs and natural products in modulating the gut-skin axis, aiming to advance the treatment of skin diseases.

18.
Plant J ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162107

RESUMO

Plants synthesize hundreds of small secretory peptides, which are perceived by the receptor-like kinase (RLK) family at the cell surface. Various signaling peptide-RLK pairs ensure plant adaptation to distinct environmental conditions. Here, we report that SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) immune peptides modulate root growth and development by regulating PIN-FORMED (PIN)-regulated polar auxin transport in Arabidopsis. The SCOOP4 and SCOOP12 treatments impaired root gravitropic growth, auxin redistribution in response to gravistimulation, and PIN abundance in the PM. Furthermore, genetic and cell biological analyses revealed that these physiological and cellular effects of SCOOP4 and SCOOP12 peptides are mediated by the receptor MALE DISCOVERER1-INTERACTING RECEPTOR LIKE KINASE2 (MIK2) and the downstream mitogen-activated kinase MPK6. Biochemical evidence indicates that MPK6 directly phosphorylates the cytosolic loop of PIN proteins. Our work established a link between the immune signaling peptide SCOOPs and root growth pathways, providing insights into the molecular mechanisms underlying plant root adaptive growth in the defense response.

19.
Drug Saf ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093543

RESUMO

BACKGROUND AND OBJECTIVE: An increasing number of observational studies have investigated the risk of using drugs during pregnancy on congenital malformations. However, the credibility of the causal relationships drawn from these studies remains uncertain. This study aims to evaluate the potential methodological issues in existing observational studies. METHODS: We used a stepwise approach to investigate this issue. First, we identified observational studies published in 2020 that examined the risk of congenital malformations associated with medication use during pregnancy. We assessed the methodological characteristics for establishing causality, including study design, confounding control, and sensitivity analysis, and compared them between "core clinical journals" and "general journals." For studies reporting an increased risk of congenital malformations in core clinical journals, we searched for subsequent studies addressing the same research question published between January 2021 and May 2023 to assess the consistency of the literature. RESULTS: A total of 40 eligible studies were published in 2020, primarily focused on the safety of vitamin B12 and folic acid (n = 4), antidepressants (n = 4), and others (n = 32). Our findings suggest that only two (5.00%) studies used causal models to guide the identification of confounding, and only eight (20.00%) studies assessed the potential dose-response relationship. In all, 15 (37.50%) studies used propensity score analysis strategy to achieve "mimic-randomization." In addition, 22 studies (55.00%) performed sensitivity analyses, while 10 (45.45%) showed inconsistency with the primary outcome. Furthermore, 5 studies reported positive outcomes, whereas only 1 out of 11 studies demonstrated a positive correlation between drug usage during pregnancy and major malformations in subsequent studies. CONCLUSION: A significant portion of the studies has failed to sufficiently consider the essential methodological characteristics required to improve the credibility of causal inferences. The increased risk of congenital malformations documented in core clinical journal was not adequately replicated in subsequent studies.

20.
BMC Ophthalmol ; 24(1): 348, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148060

RESUMO

BACKGROUND: To investigate the peripapillary retinal nerve fibre layer (RNFL) thickness changes and analyse factors associated with visual recovery of G11778A Leber hereditary optic neuropathy (LHON) patients. METHODS: Patients diagnosed with G11778A LHON between July 2017 and December 2020 in Tongji hospital were included in this follow-up study. Patients were grouped according to disease duration. Variations in the RNFL thickness in each quadrant at different disease stages were characterised using optical coherence tomography. According to the absence or presence of significant visual acuity improvements, LHON patients of disease duration ≥ 6 months were divided into two groups. A bivariate logistic regression model was constructed to analyse the potential factors associated with spontaneous visual recovery. RESULTS: This study included 56 G11778A LHON patients (112 eyes) and 25 healthy controls (50 eyes), with a mean follow-up of 5.25 ± 1.42 months. All quadrants and mean RNFL thicknesses of LHON patients first increased and then decreased, except for the temporal RNFL. As the disease progressed, RNFL thinning slowed; however, gradual RNFL thinning occurred. Logistic regression revealed that baseline best corrected visual acuity was related to spontaneous visual recovery of LHON patients with disease duration ≥ 6 months. CONCLUSION: The pattern of RNFL involvement could be helpful in the differential diagnosis of LHON and other optic neuropathies. LHON patients with better vision are more likely to experience some degree of spontaneous visual acuity recovery after the subacute phase.


Assuntos
Fibras Nervosas , Atrofia Óptica Hereditária de Leber , Células Ganglionares da Retina , Tomografia de Coerência Óptica , Acuidade Visual , Humanos , Atrofia Óptica Hereditária de Leber/fisiopatologia , Atrofia Óptica Hereditária de Leber/diagnóstico , Masculino , Feminino , Fibras Nervosas/patologia , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica/métodos , Seguimentos , Adulto , Acuidade Visual/fisiologia , Adulto Jovem , Disco Óptico/patologia , Disco Óptico/diagnóstico por imagem , Adolescente , Pessoa de Meia-Idade , Estudos Retrospectivos , Campos Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA