Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 10(10)2020 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080786

RESUMO

The autosomal-dominant pleiotropic disorder called oculodentodigital dysplasia (ODDD) is caused by mutations in the gap junction protein Cx43. Of the 73 mutations identified to date, over one-third are localized in the cytoplasmic loop (Cx43CL) domain. Here, we determined the mechanism by which three ODDD mutations (M147T, R148Q, and T154A), all of which localize within the predicted 1-5-10 calmodulin-binding motif of the Cx43CL, manifest the disease. Nuclear magnetic resonance (NMR) and circular dichroism revealed that the three ODDD mutations had little-to-no effect on the ability of the Cx43CL to form α-helical structure as well as bind calmodulin. Combination of microscopy and a dye-transfer assay uncovered these mutations increased the intracellular level of Cx43 and those that trafficked to the plasma membrane did not form functional channels. NMR also identify that CaM can directly interact with the Cx43CT domain. The Cx43CT residues involved in the CaM interaction overlap with tyrosines phosphorylated by Pyk2 and Src. In vitro and in cyto data provide evidence that the importance of the CaM interaction with the Cx43CT may lie in restricting Pyk2 and Src phosphorylation, and their subsequent downstream effects.


Assuntos
Calmodulina/genética , Conexina 43/genética , Anormalidades Craniofaciais/genética , Anormalidades do Olho/genética , Deformidades Congênitas do Pé/genética , Sindactilia/genética , Anormalidades Dentárias/genética , Calmodulina/ultraestrutura , Movimento Celular/genética , Conexina 43/ultraestrutura , Anormalidades Craniofaciais/patologia , Citoplasma/genética , Anormalidades do Olho/patologia , Quinase 2 de Adesão Focal/genética , Deformidades Congênitas do Pé/patologia , Junções Comunicantes/genética , Células HeLa , Humanos , Mutação com Perda de Função/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Transporte Proteico/genética , Sindactilia/patologia , Anormalidades Dentárias/patologia
2.
FEBS Lett ; 592(9): 1554-1564, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29624661

RESUMO

Codon usage distribution has been soundly used by nature to fine tune protein biogenesis. Alteration of the mRNA structure or sequential scheduling of codons can profoundly affect translation, thus altering protein yield, functionality, solubility, and proper folding. Building on these observations, here, we present an evaluation of different recently designed algorithms of sequence adaptation based on Codon Adaptation Index (CAI) profiling. The first algorithm globally harmonizes synonymous codons in the original sequence in full respect to the heterologous expression host codon usage. The second recodes the sequence in accordance with the native sequence CAI profile. Our data, generated on three model proteins, highlights the importance to consider gene recoding as a parameter itself for recombinant protein expression improvement.


Assuntos
Códon/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica , Algoritmos , Sequência de Bases , Biossíntese de Proteínas , Solubilidade
3.
Future Microbiol ; 8(12): 1537-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24266354

RESUMO

The nucleoprotein (NP) of influenza virus covers the viral RNA entirely and it is this NP-RNA complex that is the template for transcription and replication by the viral polymerase. Purified NP forms a dynamic equilibrium between monomers and small oligomers, but only the monomers can oligomerize onto RNA. Therefore, drugs that stabilize the monomers or that induce abnormal oligomerization may have an antiviral effect, as would drugs that interfere with RNA binding. Crystal structures have been produced for monomeric and dimeric mutants, and for trimers and tetramers; high-resolution electron microscopy structures have also been calculated for the viral NP-RNA complex. We explain how these structures and the dynamic oligomerization equilibrium of NP can be and have been used for anti-influenza drug development.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A/metabolismo , Influenza Humana/virologia , Nucleoproteínas/química , Nucleoproteínas/metabolismo , RNA Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Animais , Humanos , Vírus da Influenza A/química , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Nucleoproteínas/antagonistas & inibidores , Nucleoproteínas/genética , RNA Viral/genética , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética
4.
PLoS Pathog ; 9(3): e1003275, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555270

RESUMO

Isolated influenza A virus nucleoprotein exists in an equilibrium between monomers and trimers. Samples containing only monomers or only trimers can be stabilized by respectively low and high salt. The trimers bind RNA with high affinity but remain trimmers, whereas the monomers polymerise onto RNA forming nucleoprotein-RNA complexes. When wild type (wt) nucleoprotein is crystallized, it forms trimers, whether one starts with monomers or trimers. We therefore crystallized the obligate monomeric R416A mutant nucleoprotein and observed how the domain exchange loop that leads over to a neighbouring protomer in the trimer structure interacts with equivalent sites on the mutant monomer surface, avoiding polymerisation. The C-terminus of the monomer is bound to the side of the RNA binding surface, lowering its positive charge. Biophysical characterization of the mutant and wild type monomeric proteins gives the same results, suggesting that the exchange domain is folded in the same way for the wild type protein. In a search for how monomeric wt nucleoprotein may be stabilized in the infected cell we determined the phosphorylation sites on nucleoprotein isolated from virus particles. We found that serine 165 was phosphorylated and conserved in all influenza A and B viruses. The S165D mutant that mimics phosphorylation is monomeric and displays a lowered affinity for RNA compared with wt monomeric NP. This suggests that phosphorylation may regulate the polymerisation state and RNA binding of nucleoprotein in the infected cell. The monomer structure could be used for finding new anti influenza drugs because compounds that stabilize the monomer may slow down viral infection.


Assuntos
Vírus da Influenza A/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Sítios de Ligação , Dicroísmo Circular , Cristalização , Vírus da Influenza A/química , Vírus da Influenza A/ultraestrutura , Mutação , Tamanho da Partícula , Fosforilação , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Viral/química , Ribonucleoproteínas/química , Proteínas Virais/química
5.
Antimicrob Agents Chemother ; 57(5): 2231-42, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23459490

RESUMO

The nucleoprotein (NP) binds the viral RNA genome and associates with the polymerase in a ribonucleoprotein complex (RNP) required for transcription and replication of influenza A virus. NP has no cellular counterpart, and the NP sequence is highly conserved, which led to considering NP a hot target in the search for antivirals. We report here that monomeric nucleoprotein can be inhibited by a small molecule binding in its RNA binding groove, resulting in a novel antiviral against influenza A virus. We identified naproxen, an anti-inflammatory drug that targeted the nucleoprotein to inhibit NP-RNA association required for NP function, by virtual screening. Further docking and molecular dynamics (MD) simulations identified in the RNA groove two NP-naproxen complexes of similar levels of interaction energy. The predicted naproxen binding sites were tested using the Y148A, R152A, R355A, and R361A proteins carrying single-point mutations. Surface plasmon resonance, fluorescence, and other in vitro experiments supported the notion that naproxen binds at a site identified by MD simulations and showed that naproxen competed with RNA binding to wild-type (WT) NP and protected active monomers of the nucleoprotein against proteolytic cleavage. Naproxen protected Madin-Darby canine kidney (MDCK) cells against viral challenges with the H1N1 and H3N2 viral strains and was much more effective than other cyclooxygenase inhibitors in decreasing viral titers of MDCK cells. In a mouse model of intranasal infection, naproxen treatment decreased the viral titers in mice lungs. In conclusion, naproxen is a promising lead compound for novel antivirals against influenza A virus that targets the nucleoprotein in its RNA binding groove.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/farmacologia , Naproxeno/farmacologia , Nucleoproteínas/antagonistas & inibidores , RNA Viral/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/química , Antivirais/química , Sítios de Ligação , Cães , Descoberta de Drogas , Reposicionamento de Medicamentos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/química , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naproxeno/química , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Mutação Puntual , Ligação Proteica , RNA Viral/química , RNA Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
6.
Virologie (Montrouge) ; 17(1): 6-16, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31910551

RESUMO

Transcription and replication by influenza virus are carried out by protein-RNA complexes named RNPs. There are eight of these complexes, each containing one of the eight segments of viral RNA, multiple copies of the viral nucleoprotein and each complex carries a copy of the viral RNA-dependent RNA polymerase. The polymerase itself is a complex of three subunits: PB1, PB2 and PA. Through an effort by laboratories from all over the world, atomic structures have been determined of nucleoproteins of several viral strains and of protein domains of PA and PB2. For PB1, only the structures of the small interfaces with PA and PB2 have been determined. Even though a full understanding of the fundamental processes in the viral life cycle is still lacking, the structures have revealed how nucleoprotein can oligomerize and binds to RNA, how PB1 binds to PA and how the polymerase binds to capped cellular pre-messenger RNA (mRNA) and cleaves this RNA in order to make a capped primer for its own mRNAs (cap-snatching mechanism). The structures also stimulated structure-aided drug design efforts and first generation inhibitors against nucleoprotein oligomerization, binding of PB1 to PA and the cap-snatching activity have been published. Such inhibitors may be developed into new anti-influenza drugs.

7.
Virologie (Montrouge) ; 14(6): 435-445, 2010 Dec 01.
Artigo em Francês | MEDLINE | ID: mdl-36151627

RESUMO

Influenza virus polymerase transcribes and replicates the viral RNA genome within the context of a ribonucleoprotein complex that has been hitherto remarkably intractable to structural analysis. In the last three years, crystal structures of independent domains covering roughly half of the heterotrimeric polymerase have been determined. These include the cap-binding and endonuclease domains, critical for the unique cap-snatching mechanism of mRNA transcription, and the major inter-subunit interfaces. In addition a cryoelectron microscopy structure of the entire ribonucleoprotein complex has been determined opening the way to the construction of a quasi-atomic model of the influenza replication machinery. These results provide the first detailed structure-function insights into polymerase assembly, transcription and host adaptation and will have an impact on anti-influenza drug design.

8.
J Biol Chem ; 284(49): 34257-71, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19808665

RESUMO

Gap junctions are intercellular channels that allow the passage of ions, small molecules, and second messengers that are essential for the coordination of cellular function. They are formed by two hemichannels, each constituted by the oligomerization of six connexins (Cx). Among the 21 different human Cx isoforms, studies have suggested that in the heart, Cx40 and Cx43 can oligomerize to form heteromeric hemichannels. The mechanism of heteromeric channel regulation has not been clearly defined. Tissue ischemia leads to intracellular acidification and closure of Cx43 and Cx40 homomeric channels. However, coexpression of Cx40 and Cx43 in Xenopus oocytes enhances the pH sensitivity of the channel. This phenomenon requires the carboxyl-terminal (CT) part of both connexins. In this study we used different biophysical methods to determine the structure of the Cx40CT and characterize the Cx40CT/Cx43CT interaction. Our results revealed that the Cx40CT is an intrinsically disordered protein similar to the Cx43CT and that the Cx40CT and Cx43CT can interact. Additionally, we have identified an interaction between the Cx40CT and the cytoplasmic loop of Cx40 as well as between the Cx40CT and the cytoplasmic loop of Cx43 (and vice versa). Our studies support the "particle-receptor" model for pH gating of Cx40 and Cx43 gap junction channels and suggest that interactions between cytoplasmic regulatory domains (both homo- and hetero-connexin) could be important for the regulation of heteromeric channels.


Assuntos
Conexina 43/química , Conexinas/química , Citoplasma/metabolismo , Sequência de Aminoácidos , Animais , Conexina 43/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Oócitos/metabolismo , Isoformas de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Xenopus , Proteína alfa-5 de Junções Comunicantes
9.
J Biol Chem ; 282(22): 16612-22, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17412695

RESUMO

The C-terminal Eps15 homology domain-containing protein, EHD1, regulates the recycling of receptors from the endocytic recycling compartment to the plasma membrane. In cells, EHD1 localizes to tubular and spherical recycling endosomes. To date, the mode by which EHD1 associates with endosomal membranes remains unknown, and it has not been determined whether this interaction is direct or via interacting proteins. Here, we provide evidence demonstrating that EHD1 has the ability to bind directly and preferentially to an array of phospholipids, preferring phosphatidylinositols with a phosphate at position 3. Previous studies have demonstrated that EH domains coordinate calcium binding and interact with proteins containing the tripeptide asparagine-proline-phenylalanine (NPF). Using two-dimensional nuclear magnetic resonance analysis, we now describe a new function for the Eps15 homology (EH) domain of EHD1 and show that it is capable of directly binding phosphatidylinositol moieties. Moreover, we have expanded our studies to include the C-terminal EH domain of EHD4 and the second of the three N-terminal EH domains of Eps15 and demonstrated that phosphatidylinositol binding may be a more general property shared by certain other EH domains. Further studies identified a positively charged lysine residue (Lys-483) localized within the third helix of the EH domain, on the opposite face of the NPF-binding pocket, as being critical for the interaction with the phosphatidylinositols.


Assuntos
Proteínas de Ligação ao Cálcio/química , Membrana Celular/química , Endossomos/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Fosfatidilinositóis/química , Fosfoproteínas/química , Proteínas de Transporte Vesicular/química , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sítios de Ligação/fisiologia , Cálcio/química , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fosfatidilinositóis/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Transporte Vesicular/metabolismo
10.
J Biol Chem ; 280(14): 13752-61, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15657040

RESUMO

The neutrophil NADPH oxidase produces superoxide anions in response to infection. This reaction is activated by association of cytosolic factors, p47phox and p67phox, and a small G protein Rac with the membranous flavocytochrome b558. Another cytosolic factor, p40phox, is associated to the complex and is reported to play regulatory roles. Initiation of the NADPH oxidase activation cascade has been reported as consecutive to phosphorylation on serines 359/370 and 379 of the p47phox C terminus. These serines surround a polyproline motif that can interact with the Src homology 3 (SH3) module of p40phox (SH3p40) or the C-terminal SH3 of p67phox (C-SH3p67). The latter one presents a higher affinity in the resting state for p47phox. A change in SH3 binding preference following phosphorylation has been postulated earlier. Here we report the crystal structures of SH3p40 alone or in complex with a 12-residue proline-rich region of p47phox at 1.46 angstrom resolution. Using intrinsic tryptophan fluorescence measurements, we compared the affinity of the strict polyproline motif and the whole C terminus peptide with both SH3p40 and C-SH3p67. These data reveal that SH3p40 can interact with a consensus polyproline motif but also with a noncanonical motif of the p47phox C terminus. The electrostatic surfaces of both SH3 are very different, and therefore the binding preference for C-SH3p67 can be attributed to the polyproline motif recognition and particularly to the Arg-368p47 binding mode. The noncanonical motif contributes equally to interaction with both SH3. The influence of serine phosphorylation on residues 359/370 and 379 on the affinity for both SH3 domains has been checked. We conclude that contrarily to previous suggestions, phosphorylation of Ser-359/370 does not modify the SH3 binding affinity for both SH3, whereas phosphorylation of Ser-379 has a destabilizing effect on both interactions. Other mechanisms than a phosphorylation induced switch between the two SH3 must therefore take place for NADPH oxidase activation cascade to start.


Assuntos
NADPH Oxidases , Fosfoproteínas , Fosfoproteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Domínios de Homologia de src , Sequência de Aminoácidos , Cristalografia por Raios X , Ativação Enzimática , Modelos Moleculares , Dados de Sequência Molecular , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Alinhamento de Sequência , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...