Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1250831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538065
2.
Plants (Basel) ; 11(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365329

RESUMO

Climate change is likely to have severe impacts on food security in the topics as these regions of the world have both the highest human populations and narrower climatic niches, which reduce the diversity of suitable crops. Legume crops are of particular importance to food security, supplying dietary protein for humans both directly and in their use for feed and forage. Other than the rhizobia associated with legumes, soil microbes, in particular arbuscular mycorrhizal fungi (AMF), can mitigate the effects of biotic and abiotic stresses, offering an important complementary measure to protect crop yields. This review presents current knowledge on AMF, highlights their beneficial role, and explores the potential for application of AMF in mitigating abiotic and biotic challenges for tropical legumes. Due to the relatively little study on tropical legume species compared to their temperate growing counterparts, much further research is needed to determine how similar AMF-plant interactions are in tropical legumes, which AMF species are optimal for agricultural deployment and especially to identify anaerobic AMF species that could be used to mitigate flood stress in tropical legume crop farming. These opportunities for research also require international cooperation and support, to realize the promise of tropical legume crops to contribute to future food security.

3.
Life (Basel) ; 12(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36294977

RESUMO

While previous research has demonstrated that multiplex polymerase chain reaction (PCR) can be a cost-effective approach to detect various genes in crops, the availability of multiplex assays to simultaneously screen both grain quality and biotic stress resistance traits in rice (Oryza sativa) is limited. In this work, we report six novel multiplex assays that use a universal protocol to detect major rice grain quality (amylose content and fragrance) and biotic stress (blast, sheath blight, and bacterial leaf blight) traits with amplified products consisting of up to four primer pairs that can be analyzed using a standard agarose-based gel electrophoresis system. Recent studies have suggested that weedy rice has novel sources of disease resistance. However, an intensive screening of weedy biotypes has not been reported in Malaysia. Accordingly, we employed one of the developed multiplex assays to screen reported genes or quantitative trait loci (QTLs) associated with blast, sheath blight, and bacterial leaf blight diseases in 100 weedy rice biotypes collected from five local fields, with phenotyping performed to validate the genotyping results. In conclusion, our universal multiplex protocol is effective for the large-scale genotyping of rice genetic resources, and it can be employed in routine molecular laboratories with limited resources.

4.
Biology (Basel) ; 11(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36009834

RESUMO

Species invasion is a leading threat to marine ecosystems worldwide, being deemed as one of the ultimate jeopardies for biodiversity along with climate change. Tackling the emerging biodiversity threat to maintain the ecological balance of the largest biome in the world has now become a pivotal part of the Sustainable Development Goals (SDGs). Marine herbivores are often considered as biological agents that control the spread of invasive species, and their effectiveness depends largely on factors that influence their feeding preferences, including the specific attributes of their food-the autotrophs. While the marine autotroph-herbivore interactions have been substantially discussed globally, many studies have reported contradictory findings on the effects of nutritional attributes and novelty of autotrophs on herbivore feeding behaviour. In view of the scattered literature on the mechanistic basis of autotroph-herbivore interactions, we generate a comprehensive review to furnish insights into critical knowledge gaps about the synergies based largely on the characteristics of macroalgae; an important group of photosynthetic organisms in the marine biome that interact strongly with generalist herbivores. We also discuss the key defence strategies of these macroalgae against the herbivores, highlighting their unique attributes and plausible roles in keeping the marine ecosystems intact. Overall, the feeding behaviour of herbivores can be affected by the nutritional attributes, morphology, and novelty of the autotrophs. We recommend that future research should carefully consider different factors that can potentially affect the dynamics of the marine autotroph-herbivore interactions to resolve the inconsistent results of specific attributes and novelty of the organisms involved.

5.
Biology (Basel) ; 11(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35625365

RESUMO

Around 80% of megaflora species became extinct at the Cretaceous-Paleogene (K-Pg) boundary. Subsequent polyploidy events drove the survival of thousands of plant species and played a significant historical role in the development of the most successful modern cereal crops. However, current and rapid global temperature change poses an urgent threat to food crops worldwide, including the world's big three cereals: rice, wheat, and maize, which are members of the grass family, Poaceae. Some minor cereals from the same family (such as teff) have grown in popularity in recent years, but there are important knowledge gaps regarding the similarities and differences between major and minor crops, including how polyploidy affects their biological processes under natural and (a)biotic stress conditions and thus the potential to harness polyploidization attributes for improving crop climate resilience. This review focuses on the impact of polyploidy events on the Poaceae family, which includes the world's most important food sources, and discusses the past, present, and future of polyploidy research for major and minor crops. The increasing accessibility to genomes of grasses and their wild progenitors together with new tools and interdisciplinary research on polyploidy can support crop improvement for global food security in the face of climate change.

6.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409335

RESUMO

The understanding of how genetic information may be inherited through generations was established by Gregor Mendel in the 1860s when he developed the fundamental principles of inheritance. The science of genetics, however, began to flourish only during the mid-1940s when DNA was identified as the carrier of genetic information. The world has since then witnessed rapid development of genetic technologies, with the latest being genome-editing tools, which have revolutionized fields from medicine to agriculture. This review walks through the historical timeline of genetics research and deliberates how this discipline might furnish a sustainable future for humanity.


Assuntos
Hereditariedade , Bases de Dados Genéticas , Padrões de Herança
7.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925559

RESUMO

The natural timing devices of organisms, commonly known as biological clocks, are composed of specific complex folding molecules that interact to regulate the circadian rhythms. Circadian rhythms, the changes or processes that follow a 24-h light-dark cycle, while endogenously programmed, are also influenced by environmental factors, especially in sessile organisms such as plants, which can impact ecosystems and crop productivity. Current knowledge of plant clocks emanates primarily from research on Arabidopsis, which identified the main components of the circadian gene regulation network. Nonetheless, there remain critical knowledge gaps related to the molecular components of circadian rhythms in important crop groups, including the nitrogen-fixing legumes. Additionally, little is known about the synergies and trade-offs between environmental factors and circadian rhythm regulation, especially how these interactions fine-tune the physiological adaptations of the current and future crops in a rapidly changing world. This review highlights what is known so far about the circadian rhythms in legumes, which include major as well as potential future pulse crops that are packed with nutrients, particularly protein. Based on existing literature, this review also identifies the knowledge gaps that should be addressed to build a sustainable food future with the reputed "poor man's meat".


Assuntos
Ritmo Circadiano/fisiologia , Fabaceae/metabolismo , Fabaceae/fisiologia , Agricultura/métodos , Agricultura/tendências , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Fabaceae/genética , Regulação da Expressão Gênica de Plantas/genética , Fotoperíodo
8.
Sci Rep ; 10(1): 19112, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154411

RESUMO

Worldwide, many mangrove species are experiencing significant population declines, including Rhizophora apiculata, which is one of the most widespread and economically important species in tropical Asia. In Malaysia, there has been an alarming decline in R. apiculata populations driven primarily by anthropogenic activities. However, the lack of genetic and demographic information on this species has hampered local efforts to conserve it. To address these gaps, we generated novel genetic information for R. apiculata, based on 1,120 samples collected from 39 natural populations in Peninsular Malaysia. We investigated its genetic diversity and genetic structure with 19 transcriptome and three nuclear microsatellite markers. Our analyses revealed a low genetic diversity (mean He: 0.352) with significant genetic differentiation (FST: 0.315) among populations of R. apiculata. Approximately two-third of the populations showed significant excess of homozygotes, indicating persistent inbreeding which might be due to the decrease in population size or fragmentation. From the cluster analyses, the populations investigated were divided into two distinct clusters, comprising the west and east coasts of Peninsular Malaysia. The western cluster was further divided into two sub-clusters with one of the sub-clusters showing strong admixture pattern that harbours high levels of genetic diversity, thus deserving high priority for conservation.


Assuntos
Evolução Biológica , Ecossistema , Espécies em Perigo de Extinção , Variação Genética , Rhizophoraceae/genética , Deriva Genética , Malásia , Repetições de Microssatélites
9.
Front Plant Sci ; 11: 531, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431724

RESUMO

The last decade has witnessed dramatic changes in global food consumption patterns mainly because of population growth and economic development. Food substitutions for healthier eating, such as swapping regular servings of meat for protein-rich crops, is an emerging diet trend that may shape the future of food systems and the environment worldwide. To meet the erratic consumer demand in a rapidly changing world where resources become increasingly scarce due largely to anthropogenic activity, the need to develop crops that benefit both human health and the environment has become urgent. Legumes are often considered to be affordable plant-based sources of dietary proteins. Growing legumes provides significant benefits to cropping systems and the environment because of their natural ability to perform symbiotic nitrogen fixation, which enhances both soil fertility and water-use efficiency. In recent years, the focus in legume research has seen a transition from merely improving economically important species such as soybeans to increasingly turning attention to some promising underutilized species whose genetic resources hold the potential to address global challenges such as food security and climate change. Pulse crops have gained in popularity as an affordable source of food or feed; in fact, the United Nations designated 2016 as the International Year of Pulses, proclaiming their critical role in enhancing global food security. Given that many studies have been conducted on numerous underutilized pulse crops across the world, we provide a systematic review of the related literature to identify gaps and opportunities in pulse crop genetics research. We then discuss plausible strategies for developing and using pulse crops to strengthen food and nutrition security in the face of climate and anthropogenic changes.

10.
Plants (Basel) ; 9(3)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188108

RESUMO

Rice, the first crop to be fully sequenced and annotated in the mid-2000s, is an excellent model species for crop research due mainly to its relatively small genome and rich genetic diversity. The 130-million-year-old cereal came into the limelight in the 1960s when the semi-dwarfing gene sd-1, better known as the "green revolution" gene, resulted in the establishment of a high-yielding semi-dwarf variety IR8. Deemed as the miracle rice, IR8 saved millions of lives and revolutionized irrigated rice farming particularly in the tropics. The technology, however, spurred some unintended negative consequences, especially in prompting ubiquitous monoculture systems that increase agricultural vulnerability to extreme weather events and climate variability. One feasible way to incorporate resilience in modern rice varieties with narrow genetic backgrounds is by introgressing alleles from the germplasm of its weedy and wild relatives, or perhaps from the suitable underutilized species that harbor novel genes responsive to various biotic and abiotic stresses. This review reminisces the fascinating half-century journey of rice research and highlights the potential utilization of weedy rice and underutilized grains in modern breeding programs. Other possible alternatives to improve the sustainability of crop production systems in a changing climate are also discussed.

11.
Ciênc. rural (Online) ; 50(2): e20190570, 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1089542

RESUMO

ABSTRACT: An experiment was conducted to investigate the effects of different shading regimes [i.e., 60% (heavy), 30% (moderate), and 0% (control)] on 25 traits associated with the morphological features, photosynthetic gas exchange and agronomic characteristics of winged bean (Psophocarpus tetragonolobus), an underutilized protein-rich legume from the tropics. Collectively, 80% of the studied variables displayed significant differences (P<0.05) between at least two shade treatments. Shading generally showed most pronounced effect on the physiological traits of the legume, whereby the stomatal conductance, photosynthetic and transpiration rate differed significantly among plants for all treatments. The non-shaded plants were observed to have superior growth and physiological responses than the shaded plants. Interestingly, the moderately shaded plants exhibited the highest yield per plant, which significantly differed from the non-shaded and heavily shaded plants. This indicated that winged bean can adapt to partial canopy cover, making it a potential nitrogen-fixing cash crop which can be planted together with fruit or oil trees in commercial plantations.


RESUMO: Foi conduzido um experimento para investigar os efeitos de diferentes regimes de sombreamento [60% (pesado), 30% (moderado) e 0% (controle)] em 25 características associadas às características morfológicas, trocas gasosas fotossintéticas e características agronômicas de feijão alado (Psophocarpus tetragonolobus), leguminosa subutilizada rica em proteínas dos trópicos. Coletivamente, 80% das variáveis ​​estudadas apresentaram diferenças significativas (P<0,05) entre pelo menos dois tratamentos à sombra. O sombreamento mostrou efeito mais pronunciado nas características fisiológicas da leguminosa, pelo que a condutância estomática, a taxa fotossintética e a transpiração diferiram significativamente entre as plantas em todos os tratamentos. Observou-se que as plantas não sombreadas apresentaram crescimento e respostas fisiológicas superiores às plantas sombreadas. Curiosamente, as plantas moderadamente sombreadas exibiram o maior rendimento por planta, que diferiu significativamente das plantas não sombreadas e fortemente das sombreadas. Isso indica que o feijão alado pode se adaptar a cobertura parcial do dossel, tornando-o uma cultura potencial de fixação de nitrogênio que pode ser plantada em conjunto com árvores frutíferas ou oleaginosas em plantações comerciais.

12.
Plant Sci ; 269: 136-142, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29606211

RESUMO

Genetic erosion of crops has been determined way back in the 1940s and accelerated some twenty years later by the inception of the Green Revolution. Claims that the revolution was a complete triumph remain specious, especially since the massive production boost in the global big three grain crops; wheat, maize, and rice that happened back then is unlikely to recur under current climate irregularities. Presently, one of the leading strategies for sustainable agriculture is by unlocking the genetic potential of underutilized crops. The primary focus has been on a suite of ancient cereals and pseudo-cereals which are riding on the gluten-free trend, including, among others, grain amaranth, buckwheat, quinoa, teff, and millets. Each of these crops has demonstrated tolerance to various stress factors such as drought and heat. Apart from being the centuries-old staple in their native homes, these crops have also been traditionally used as forage for livestock. This review summarizes what lies in the past and present for these underutilized cereals, particularly concerning their potential role and significance in a rapidly changing world, and provides compelling insights into how they could one day be on par with the current big three in feeding a booming population.


Assuntos
Agricultura/métodos , Grão Comestível/genética , Abastecimento de Alimentos , Amaranthus/genética , Chenopodium quinoa/genética , Mudança Climática , Produtos Agrícolas/genética , Dieta Livre de Glúten , Eragrostis/genética , Fagopyrum/genética , Humanos , Milhetes/genética
13.
Genome ; 60(12): 1045-1050, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28813631

RESUMO

While it is crucial for developing countries like Malaysia to achieve self-sufficiency in rice (Oryza sativa L.), it is equally critical to be able to produce high-quality rice, specifically fragrant rice, which demands are often met through importation. The present study was aimed at developing high-yielding fragrant rice, in a timely and cost-effective manner. A marker-assisted backcross (MABC) approach was optimised to introgress the fragrance gene (fgr) into two high-yielding Malaysian varieties, MR84 and MR219, within two years utilising less than 50 molecular markers. Coupled with phenotypic screening, one single foreground marker (fgr-SNP) and 48 background markers were selected and utilised, revealing recovery of at least 90% of recurrent parent genome (RPG) in merely two backcross generations. Collectively, the yield potential of the developed BC2F2 lines (BLs) was higher (P > 0.05) than the donor parent, MRQ74, and similar (P < 0.05) to both the recurrent parents, MR84 and MR219. In addition, some of the developed BLs showed good grain quality, such as having long grain. We believe that this is the first report comprising the validation and utilisation of the single functional marker system (fgr-SNP) in introgressing the fgr gene into different rice varieties.


Assuntos
Grão Comestível/normas , Endogamia/métodos , Oryza/genética , Melhoramento Vegetal/métodos , Grão Comestível/genética , Genes de Plantas , Marcadores Genéticos
14.
Biol Rev Camb Philos Soc ; 92(1): 188-198, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26456883

RESUMO

There are more than 50000 known edible plants in the world, yet two-thirds of global plant-derived food is provided by only three major cereals - maize (Zea mays), wheat (Triticum aestivum) and rice (Oryza sativa). The dominance of this triad, now considered truly global food commodities, has led to a decline in the number of crop species contributing to global food supplies. Our dependence on only a few crop species limits our capability to deal with challenges posed by the adverse effects of climate change and the consequences of dietary imbalance. Emerging evidence suggests that climate change will cause shifts in crop production and yield loss due to more unpredictable and hostile weather patterns. One solution to this problem is through the wider use of underutilised (also called orphan or minor) crops to diversify agricultural systems and food sources. In addition to being highly nutritious, underutilised crops are resilient in natural and agricultural conditions, making them a suitable surrogate to the major crops. One such crop is teff [Eragrostis tef (Zucc.) Trotter], a warm-season annual cereal with the tiniest grain in the world. Native to Ethiopia and often the sustenance for local small farmers, teff thrives in both moisture-stressed and waterlogged soil conditions, making it a dependable staple within and beyond its current centre of origin. Today, teff is deemed a healthy wheat alternative in the West and is sought-after by health aficionados and those with coeliac disease or gluten sensitivity. The blooming market for healthy food is breathing new life into this underutilised crop, which has received relatively limited attention from mainstream research perhaps due to its 'orphan crop' status. This review presents the past, present and future of an ancient grain with a potential beyond its size.


Assuntos
Agricultura/normas , Grão Comestível , Eragrostis , Abastecimento de Alimentos/normas , Agricultura/tendências , Mudança Climática , Produtos Agrícolas
15.
Trends Plant Sci ; 21(5): 365-368, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27131298

RESUMO

The prediction is that food supply must double by 2050 to cope with the impact of climate change and population pressure on global food systems. The diversification of staple crops and the systems in which they grow is essential to make future agriculture sustainable, resilient, and suitable for local environments and soils.


Assuntos
Produtos Agrícolas/fisiologia , Abastecimento de Alimentos , Agricultura , Mudança Climática
16.
Int J Mol Sci ; 13(5): 6156-6166, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22754356

RESUMO

The polymorphisms of Waxy (Wx) microsatellite and G-T single-nucleotide polymorphism (SNP) in the Wx gene region were analyzed using simplified techniques in fifteen rice varieties. A rapid and reliable electrophoresis method, MetaPhor agarose gel electrophoresis (MAGE), was effectively employed as an alternative to polyacrylamide gel electrophoresis (PAGE) for separating Wx microsatellite alleles. The amplified products containing the Wx microsatellite ranged from 100 to 130 bp in length. Five Wx microsatellite alleles, namely (CT)(10), (CT)(11), (CT)(16), (CT)(17), and (CT)(18) were identified. Of these, (CT)(11) and (CT)(17) were the predominant classes among the tested varieties. All varieties with an apparent amylose content higher than 24% were associated with the shorter repeat alleles; (CT)(10) and (CT)(11), while varieties with 24% or less amylose were associated with the longer repeat alleles. All varieties with intermediate and high amylose content had the sequence AGGTATA at the 5'-leader intron splice site, while varieties with low amylose content had the sequence AGTTATA. The G-T polymorphism was further verified by the PCR-AccI cleaved amplified polymorphic sequence (CAPS) method, in which only genotypes containing the AGGTATA sequence were cleaved by AccI. Hence, varieties with desirable amylose levels can be developed rapidly using the Wx microsatellite and G-T SNP, along with MAGE.


Assuntos
Amilose/metabolismo , DNA de Plantas/análise , Oryza/genética , Proteínas de Plantas/genética , Alelos , Eletroforese em Gel de Ágar/métodos , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Repetições de Microssatélites , Oryza/classificação , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...