Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nature ; 616(7957): 448-451, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858072

RESUMO

The Double Asteroid Redirection Test (DART) spacecraft successfully performed the first test of a kinetic impactor for asteroid deflection by impacting Dimorphos, the secondary of near-Earth binary asteroid (65803) Didymos, and changing the orbital period of Dimorphos. A change in orbital period of approximately 7 min was expected if the incident momentum from the DART spacecraft was directly transferred to the asteroid target in a perfectly inelastic collision1, but studies of the probable impact conditions and asteroid properties indicated that a considerable momentum enhancement (ß) was possible2,3. In the years before impact, we used lightcurve observations to accurately determine the pre-impact orbit parameters of Dimorphos with respect to Didymos4-6. Here we report the change in the orbital period of Dimorphos as a result of the DART kinetic impact to be -33.0 ± 1.0 (3σ) min. Using new Earth-based lightcurve and radar observations, two independent approaches determined identical values for the change in the orbital period. This large orbit period change suggests that ejecta contributed a substantial amount of momentum to the asteroid beyond what the DART spacecraft carried.

2.
Nature ; 616(7957): 452-456, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858074

RESUMO

Some active asteroids have been proposed to be formed as a result of impact events1. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA2, in addition to having successfully changed the orbital period of Dimorphos3, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope from impact time T + 15 min to T + 18.5 days at spatial resolutions of around 2.1 km per pixel. Our observations reveal the complex evolution of the ejecta, which are first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and subsequently by solar radiation pressure. The lowest-speed ejecta dispersed through a sustained tail that had a consistent morphology with previously observed asteroid tails thought to be produced by an impact4,5. The evolution of the ejecta after the controlled impact experiment of DART thus provides a framework for understanding the fundamental mechanisms that act on asteroids disrupted by a natural impact1,6.

3.
Nature ; 616(7957): 443-447, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858073

RESUMO

Although no known asteroid poses a threat to Earth for at least the next century, the catalogue of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation1,2. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid1-3. A test of kinetic impact technology was identified as the highest-priority space mission related to asteroid mitigation1. NASA's Double Asteroid Redirection Test (DART) mission is a full-scale test of kinetic impact technology. The mission's target asteroid was Dimorphos, the secondary member of the S-type binary near-Earth asteroid (65803) Didymos. This binary asteroid system was chosen to enable ground-based telescopes to quantify the asteroid deflection caused by the impact of the DART spacecraft4. Although past missions have utilized impactors to investigate the properties of small bodies5,6, those earlier missions were not intended to deflect their targets and did not achieve measurable deflections. Here we report the DART spacecraft's autonomous kinetic impact into Dimorphos and reconstruct the impact event, including the timeline leading to impact, the location and nature of the DART impact site, and the size and shape of Dimorphos. The successful impact of the DART spacecraft with Dimorphos and the resulting change in the orbit of Dimorphos7 demonstrates that kinetic impactor technology is a viable technique to potentially defend Earth if necessary.

4.
Nature ; 616(7957): 457-460, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858075

RESUMO

The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test1. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period2, we find an instantaneous reduction in Dimorphos's along-track orbital velocity component of 2.70 ± 0.10 mm s-1, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact3,4. For a Dimorphos bulk density range of 1,500 to 3,300 kg m-3, we find that the expected value of the momentum enhancement factor, ß, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m-3, [Formula: see text]. These ß values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos.

6.
Nat Commun ; 13(1): 240, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017491

RESUMO

Pluto, Titan, and Triton make up a unique class of solar system bodies, with icy surfaces and chemically reducing atmospheres rich in organic photochemistry and haze formation. Hazes play important roles in these atmospheres, with physical and chemical processes highly dependent on particle sizes, but the haze size distribution in reducing atmospheres is currently poorly understood. Here we report observational evidence that Pluto's haze particles are bimodally distributed, which successfully reproduces the full phase scattering observations from New Horizons. Combined with previous simulations of Titan's haze, this result suggests that haze particles in reducing atmospheres undergo rapid shape change near pressure levels ~0.5 Pa and favors a photochemical rather than a dynamical origin for the formation of Titan's detached haze. It also demonstrates that both oxidizing and reducing atmospheres can produce multi-modal hazes, and encourages reanalysis of observations of hazes on Titan and Triton.

7.
Science ; 351(6279): 1284-93, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26989245

RESUMO

NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto's encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to ~4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt.

8.
Science ; 351(6279): aad8866, 2016 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-26989258

RESUMO

Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state--over seasonal or geologic time scales.

9.
Science ; 318(5848): 226-9, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17932285

RESUMO

Although lightning has been seen on other planets, including Jupiter, polar lightning has been known only on Earth. Optical observations from the New Horizons spacecraft have identified lightning at high latitudes above Jupiter up to 80 degrees N and 74 degrees S. Lightning rates and optical powers were similar at each pole, and the mean optical flux is comparable to that at nonpolar latitudes, which is consistent with the notion that internal heat is the main driver of convection. Both near-infrared and ground-based 5-micrometer thermal imagery reveal that cloud cover has thinned substantially since the 2000 Cassini flyby, particularly in the turbulent wake of the Great Red Spot and in the southern half of the equatorial region, demonstrating that vertical dynamical processes are time-varying on seasonal scales at mid- and low latitudes on Jupiter.

10.
Science ; 318(5848): 229-31, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17932286

RESUMO

Observations of Jupiter's nightside airglow (nightglow) and aurora obtained during the flyby of the New Horizons spacecraft show an unexpected lack of ultraviolet nightglow emissions, in contrast to the case during the Voyager flybys in 1979. The flux and average energy of precipitating electrons generally decrease with increasing local time across the nightside, consistent with a possible source region along the dusk flank of Jupiter's magnetosphere. Visible emissions associated with the interaction of Jupiter and its satellite Io extend to a surprisingly high altitude, indicating localized low-energy electron precipitation. These results indicate that the interaction between Jupiter's upper atmosphere and near-space environment is variable and poorly understood; extensive observations of the day side are no guide to what goes on at night.


Assuntos
Júpiter , Meio Ambiente Extraterreno , Hidrocarbonetos , Hidrogênio , Magnetismo , Astronave
11.
Science ; 318(5848): 232-4, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17932287

RESUMO

The dusty jovian ring system must be replenished continuously from embedded source bodies. The New Horizons spacecraft has performed a comprehensive search for kilometer-sized moons within the system, which might have revealed the larger members of this population. No new moons were found, however, indicating a sharp cutoff in the population of jovian bodies smaller than 8-kilometer-radius Adrastea. However, the search revealed two families of clumps in the main ring: one close pair and one cluster of three to five. All orbit within a brighter ringlet just interior to Adrastea. Their properties are very different from those of the few other clumpy rings known; the origin and nonrandom distribution of these features remain unexplained, but resonant confinement by Metis may play a role.

12.
Science ; 316(5827): 1011-4, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17446355

RESUMO

High-resolution images of the surface of asteroid Itokawa from the Hayabusa mission reveal it to be covered with unconsolidated millimeter-sized and larger gravels. Locations and morphologic characteristics of this gravel indicate that Itokawa has experienced considerable vibrations, which have triggered global-scale granular processes in its dry, vacuum, microgravity environment. These processes likely include granular convection, landslide-like granular migrations, and particle sorting, resulting in the segregation of the fine gravels into areas of potential lows. Granular processes become major resurfacing processes because of Itokawa's small size, implying that they can occur on other small asteroids should those have regolith.

13.
Science ; 312(5778): 1344-7, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16741111

RESUMO

The ranging instrument aboard the Hayabusa spacecraft measured the surface topography of asteroid 25143 Itokawa and its mass. A typical rough area is similar in roughness to debris located on the interior wall of a large crater on asteroid 433 Eros, which suggests a surface structure on Itokawa similar to crater ejecta on Eros. The mass of Itokawa was estimated as (3.58 +/- 0.18) x 10(10) kilograms, implying a bulk density of (1.95 +/- 0.14) grams per cubic centimeter for a volume of (1.84 +/- 0.09) x 10(7) cubic meters and a bulk porosity of approximately 40%, which is similar to that of angular sands, when assuming an LL (low iron chondritic) meteorite composition. Combined with surface observations, these data indicate that Itokawa is the first subkilometer-sized small asteroid showing a rubble-pile body rather than a solid monolithic asteroid.

14.
Science ; 299(5613): 1661-3, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12637720
15.
Nature ; 415(6875): 994-6, 2002 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-11875559

RESUMO

Several planetary missions have reported the presence of substantial numbers of energetic ions and electrons surrounding Jupiter; relativistic electrons are observable up to several astronomical units (au) from the planet. A population of energetic (>30[?]keV) neutral particles also has been reported, but the instrumentation was not able to determine the mass or charge state of the particles, which were subsequently labelled energetic neutral atoms. Although images showing the presence of the trace element sodium were obtained, the source and identity of the neutral atoms---and their overall significance relative to the loss of charged particles from Jupiter's magnetosphere---were unknown. Here we report the discovery by the Cassini spacecraft of a fast (>103[?]km[?]s-1) and hot magnetospheric neutral wind extending more than 0.5[?]au from Jupiter, and the presence of energetic neutral atoms (both hot and cold) that have been accelerated by the electric field in the solar wind. We suggest that these atoms originate in volcanic gases from Io, undergo significant evolution through various electromagnetic interactions, escape Jupiter's magnetosphere and then populate the environment around the planet. Thus a 'nebula' is created that extends outwards over hundreds of jovian radii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...