Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(16): 10798-10806, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38593383

RESUMO

A three-terminal memristor with an ultrasmall footprint of only 0.07 µm2 and critical dimensions of 70 nm × 10 nm × 6 nm is introduced. The device's feature is the presence of a gate contact, which enables two operation modes: either tuning the set voltage or directly inducing a resistance change. In I-V mode, we demonstrate that by changing the gate voltages between ±1 V one can shift the set voltage by 69%. In pulsing mode, we show that resistance change can be triggered by a gate pulse. Furthermore, we tested the device endurance under a 1 kHz operation. In an experiment with 2.6 million voltage pulses, we found two distinct resistance states. The device response to a pseudorandom bit sequence displays an open eye diagram and a success ratio of 97%. Our results suggest that this device concept is a promising candidate for a variety of applications ranging from Internet-of-Things to neuromorphic computing.

2.
Light Sci Appl ; 11(1): 78, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351848

RESUMO

Memristive devices are an emerging new type of devices operating at the scale of a few or even single atoms. They are currently used as storage elements and are investigated for performing in-memory and neuromorphic computing. Amongst these devices, Ag/amorphous-SiOx/Pt memristors are among the most studied systems, with the electrically induced filament growth and dynamics being thoroughly investigated both theoretically and experimentally. In this paper, we report the observation of a novel feature in these devices: The appearance of new photoluminescent centers in SiOx upon memristive switching, and photon emission correlated with the conductance changes. This observation might pave the way towards an intrinsically memristive atomic scale light source with applications in neural networks, optical interconnects, and quantum communication.

3.
ACS Appl Mater Interfaces ; 12(8): 9925-9934, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32003964

RESUMO

A simple and thermally stable photonic heterostructure exhibiting high average reflectivity (⟨R⟩ ≈ 88.8%) across a broad wavelength range (920-1450 nm) is presented. The design combines a thin, highly reflective and broadband metallic substrate (Ta) with an optimized dielectric coating (10 layers) to create an enhanced reflector with improved optical and thermal properties compared to its constituents. The heterostructure exhibits temperature-reversible reflective properties up to 1000 °C. In order to take advantage of the high reflectivity and temperature stable properties of this coating, in a wide range of non-photonic composite materials, we have fabricated heterostructure platelets as additives. By impregnating these additives into other types of materials, their response can be photonically enhanced.  Platelets of such a heterostructure have been introduced inside an organic matrix to increase its broadband reflection performance. The platelet-impregnated matrix displays an average reflectivity improvement from 5% to an average of 55% over a 1000 nm range, making it a suitable additive for next generation thermal protection systems (TPS).

4.
ACS Nano ; 12(7): 6706-6713, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29939718

RESUMO

The optical control of atomic relocations in a metallic quantum point contact is of great interest because it addresses the fundamental limit of "CMOS scaling". Here, by developing a platform for combined electronics and photonics on the atomic scale, we demonstrate an optically controlled electronic switch based on the relocation of atoms. It is shown through experiments and simulations how the interplay between electrical, optical, and light-induced thermal forces can reversibly relocate a few atoms and enable atomic photodetection with a digital electronic response, a high resistance extinction ratio (70 dB), and a low OFF-state current (10 pA) at room temperature. Additionally, the device introduced here displays an optically induced pinched hysteretic current (optical memristor). The photodetector has been tested in an experiment with real optical data at 0.5 Gbit/s, from which an eye diagram visualizing millions of detection cycles could be produced. This demonstrates the durability of the realized atomic scale devices and establishes them as alternatives to traditional photodetectors.

5.
Nature ; 556(7702): 483-486, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29695845

RESUMO

For nearly two decades, researchers in the field of plasmonics 1 -which studies the coupling of electromagnetic waves to the motion of free electrons near the surface of a metal 2 -have sought to realize subwavelength optical devices for information technology3-6, sensing7,8, nonlinear optics9,10, optical nanotweezers 11 and biomedical applications 12 . However, the electron motion generates heat through ohmic losses. Although this heat is desirable for some applications such as photo-thermal therapy, it is a disadvantage in plasmonic devices for sensing and information technology 13 and has led to a widespread view that plasmonics is too lossy to be practical. Here we demonstrate that the ohmic losses can be bypassed by using 'resonant switching'. In the proposed approach, light is coupled to the lossy surface plasmon polaritons only in the device's off state (in resonance) in which attenuation is desired, to ensure large extinction ratios between the on and off states and allow subpicosecond switching. In the on state (out of resonance), destructive interference prevents the light from coupling to the lossy plasmonic section of a device. To validate the approach, we fabricated a plasmonic electro-optic ring modulator. The experiments confirm that low on-chip optical losses, operation at over 100 gigahertz, good energy efficiency, low thermal drift and a compact footprint can be combined in a single device. Our result illustrates that plasmonics has the potential to enable fast, compact on-chip sensing and communications technologies.

6.
Opt Express ; 25(3): 2627-2653, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519106

RESUMO

The performance of highly nonlinear organic electro-optic (EO) materials incorporated into nanoscale slots is examined. It is shown that EO coefficients as large as 190 pm/V can be obtained in 150 nm wide plasmonic slot waveguides but that the coefficients decrease for narrower slots. Possible mechanism that lead to such a decrease are discussed. Monte-Carlo computer simulations are performed, confirming that chromophore-surface interactions are one important factor influencing the EO coefficient in narrow plasmonic slots. These highly nonlinear materials are of particular interest for applications in optical modulators. However, in modulators the key parameters are the voltage-length product UπL and the insertion loss rather than the linear EO coefficients. We show record-low voltage-length products of 70 Vµm and 50 Vµm for slot widths in the order of 50 nm for the materials JRD1 and DLD164, respectively. This is because the nonlinear interaction is enhanced in narrow slot and thereby compensates for the reduced EO coefficient. Likewise, it is found that lowest insertion losses are observed for slot widths in the range 60 to 100 nm.

7.
Cancer Causes Control ; 24(3): 529-37, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23306552

RESUMO

BACKGROUND: Hepatitis B virus (HBV) infection is reported to be associated with an increased risk of pancreatic cancer (PaC), but it remains controversial whether this is a causal relationship. In addition, it is unclear whether the status of HBV infection also affects PaC risk. Therefore, we conducted a meta-analysis to more closely examine the association between HBV infection and PaC. METHOD: The studies included in the meta-analysis were identified and retrieved from PubMed and several other databases. The literature search was conducted up until August 2012. We adopted the Cochrane Collaboration's RevMan 5.1 in a combined analysis of pooled relative risk (RR) with their corresponding 95 % confidence intervals (CIs) using a random-effects and a fixed-effects model. RESULTS: Nine studies including 6 case-control and 3 cohort studies met eligibility criteria. The meta-analysis showed that the PaC risk was positively correlated with HBV infection when comparing with 'never exposed to HBV' subgroup, the pooled RR was 1.39 (95 % CI 1.22-1.59, p < 0.00001) in chronic HBV carriers, 1.41 (95 % CI 1.06-1.87, p = 0.02) in past exposure to HBV, and 3.83 (95 % CI 1.76-8.36, p = 0.0007) in active HBV infection. Using a stratified analysis, we also found that the risk of PaC was independent of smoking, alcohol drinking, and diabetes. CONCLUSION: Findings from this meta-analysis strongly support that HBV infection is associated with an increased risk of PaC.


Assuntos
Vírus da Hepatite B/isolamento & purificação , Hepatite B/complicações , Neoplasias Pancreáticas/virologia , Estudos de Casos e Controles , Estudos de Coortes , Humanos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...