Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 14(4): 575-589, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32220330

RESUMO

ADP-ribosylation factor-like 4aa (Arl4aa) is a member of the ADP-ribosylation factor family. It is expressed in hematopoietic tissue during embryonic development, but its function was unknown. Zebrafish arl4aa is preferentially expressed in the ventral wall of the dorsal aorta (VDA) at 24 and 36 hpf and in caudal hematopoietic tissue at 48 hpf. Morpholino knockdown and transcription activator-like effector nuclease (TALEN) knockout of arl4aa significantly reduced expression of genes associated with definitive hematopoietic stem cells (HSCs). Golgi complex integrity in VDA was disrupted as shown by transmission electron microscopy and immunostaining of Golgi membrane Giantin. Mechanistically, arl4aa knockdown reduced Notch signaling in the VDA and its target gene expression. Protein expression of NICD was also reduced. Effects of arl4aa knockdown on definitive hematopoiesis could be restored by NICD expression. This study identified arl4aa as a factor regulating initiation of definitive HSCs by maintaining the integrity of Golgi complex and, secondarily, maturation of the Notch receptor.


Assuntos
Complexo de Golgi/metabolismo , Hemangioblastos/metabolismo , Hematopoese , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Sequência de Bases , Sequência Conservada , Cruzamentos Genéticos , Regulação para Baixo , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Humanos , Modelos Biológicos , Mutação/genética , Receptores Notch/metabolismo , Transdução de Sinais , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição
2.
Cancer Res ; 78(9): 2332-2342, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29483095

RESUMO

Frequent relapse and drug resistance in patients with hepatocellular carcinoma (HCC) can be attributed to the existence of tumor-initiating cells (TIC) within the tumor bulk. Therefore, targeting liver TICs may improve the prognosis of these patients. From transcriptome sequencing of 16 pairs of clinical HCC samples, we report that interleukin-1 receptor-associated kinase 1 (IRAK1) in the TLR/IRAK pathway is significantly upregulated in HCC. IRAK1 overexpression in HCC was further confirmed at the mRNA and protein levels and correlated with advanced tumor stages and poor patient survival. Interestingly, IRAK4, an upstream regulator of IRAK1, was also consistently upregulated. IRAK1 regulated liver TIC properties, including self-renewal, tumorigenicity, and liver TIC marker expression. IRAK1 inhibition sensitized HCC cells to doxorubicin and sorafenib treatment in vitro via suppression of the apoptotic cascade. Pharmacological inhibition of IRAK1 with a specific IRAK1/4 kinase inhibitor consistently suppressed liver TIC populations. We identified aldo-keto reductase family 1 member 10 (AKR1B10) as a novel downstream target of IRAK1, which was found to be overexpressed in HCC and significantly correlated with IRAK1 expression. Knockdown of AKR1B10 negated IRAK1-induced TIC functions via modulation of the AP-1 complex. Inhibition of IRAK1/4 inhibitor in combination with sorafenib synergistically suppressed tumor growth in an HCC xenograft model. In conclusion, targeting the IRAK4/IRAK1/AP-1/AKR1B10 signaling pathway may be a potential therapeutic strategy against HCC.Significance: IRAK4/IRAK1/AP-1/AKR1B10 signaling pathway regulates cancer stemness and drug resistance and may be a novel therapeutic target in HCC. Cancer Res; 78(9); 2332-42. ©2018 AACR.


Assuntos
Aldeído Redutase/metabolismo , Carcinoma Hepatocelular/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Aldo-Ceto Redutases , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Biomarcadores Tumorais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA