Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 38(10): 174, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35922703

RESUMO

Uptaking U(VI) from the environment by biological method is an environmental friendly and efficient way. In this work, we have acquired and isolated the protein DSR A by genetic engineering, then assessed its capacity and mechanisms to absorb U(VI) from wastewater. As results, we proved that protein DSR A can precisely recognize, enrich and remove uranyl ions in simulated wastewater solution. Its great removal potential was demonstrated in the adsorption experiments, the adsorption capacity of protein DSR A can reach 182.3 mg/g in the condition at 10 mg/L U(VI) and pH = 6. The Langmuir isotherm model and the pseudo-first-order kinetic equation were used to better describe the absorption process. We can confirm that Na+, Sr2+ and K+, these three metal ions have less effect on the enrichment of U(VI) by protein DSR A compared with other common cations. Besides, we can educe some mechanisms for the removal of U (VI) by protein DSR A from the results of FTIR, SEM-EDS, XPS (binding energy = 2.0 ~ 4.0ke V), MAP and XRD analysis before and after adsorption. This work has demonstrated the great potential of genetic engineering and biological methods in dealing with environmental heavy ion pollution.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Cátions , Concentração de Íons de Hidrogênio , Cinética , Proteína Estafilocócica A , Águas Residuárias
2.
J Environ Radioact ; 241: 106773, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34781090

RESUMO

With the extensive exploitation of nuclear energy and uranium, the problem of uranium-contaminated soil is becoming increasingly prominent. In recent years, various technologies for remediation of uranium-contaminated soil have emerged, such as bioremediation, physical remediation and chemical remediation. Bioremediation technology has the widespread attention because of its environmental friendliness, low cost and high economic benefits. This paper mainly reviews the evaluation index of uranium-contaminated soil, soil remediation technology and its advantages and disadvantages, introduces especially the research status of soil bioremediation technology in detail, and puts forward some suggestions and prospects for bioremediation of uranium-contaminated soil.


Assuntos
Recuperação e Remediação Ambiental , Monitoramento de Radiação , Poluentes do Solo , Urânio , Biodegradação Ambiental , Solo , Tecnologia , Urânio/análise
3.
Enzyme Microb Technol ; 151: 109920, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649691

RESUMO

Research on the ability and mechanism of genetically recombinant E. coli DH5α containing DSR A gene to enrich uranium under culture conditions provides a theoretical basis for the application of the bacteria in the treatment of uranium pollution. By exploring the influence of factors such as the initial concentration of uranium, culture time, and inoculation amount on the characteristics of uranium enrichment in genetically recombinant E. coli, using FTIR, SEM-EDS, XPS and XRD explore the mechanism of uranium-enriched bacteria. The results showed that when initial UO22+ concentration reach 600 mg/L, E. Coli D1 could not survived, indicated that the maximum tolerance concentration is lower than 600 mg/L. While concentration between 0∼500 mg/L, strains D1 can grow normally and has the ability to enrich uranium. In the prime stage, strains D1 resist toxics through release inorganic phosphates to precipitate UO22+ on cell wall, after 96 h, most UO22+ were transferred into cytoplasm and metabolized into U(IV) which is less toxic. In the metabolize process, all groups involved in metabolizing UO22+, especially protein contain groups like hydroxyl, amine and carboxyl paly a huge role. It shows that within a certain concentration rage, strains D1 has a good enrichment effect on uranium under culture conditions.


Assuntos
Escherichia coli , Urânio , Bactérias , Escherichia coli/genética , Fosfatos , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...