Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 202(2): 397-408, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37640964

RESUMO

PURPOSE: Overactivated neddylation is considered to be a common event in cancer. Long non-coding RNAs (lncRNAs) can regulate cancer development by mediating post-translational modifications. However, the role of lncRNA in neddylation modification remains unclear. METHODS: LncRNA cytochrome P450 family 1 subfamily B member 1 antisense RNA 1 (CYP1B1-AS1) expression in breast cancer tissues was evaluated by RT-PCR and TCGA BRCA data. Gain and loss of function experiments were performed to explore the role of CYP1B1-AS1 in breast cancer cell proliferation and apoptosis in vitro and in vivo. Luciferase assay, CHIP-qPCR assay, transcriptome sequencing, RNA-pulldown assay, mass spectrometry, RIP-PCR and Western blot were used to investigate the regulatory factors of CYP1B1-AS1 expression and the molecular mechanism of CYP1B1-AS1 involved in neddylation modification. RESULTS: We found that CYP1B1-AS1 was down-regulated in breast cancer tissues and correlated with prognosis. In vivo and in vitro functional experiments confirmed that CYP1B1-AS1 inhibited cell proliferation and induced apoptosis. Mechanistically, CYP1B1-AS1 was regulated by the transcription factor, forkhead box O1 (FOXO1), and could be upregulated by inhibiting the PI3K/FOXO1 pathway. Moreover, CYP1B1-AS1 bound directly to NEDD8 activating enzyme E1 subunit 1 (NAE1) to regulate protein neddylation. CONCLUSION: This study reports for the first time that CYP1B1-AS1 inhibits protein neddylation to affect breast cancer cell proliferation, which provides a new strategy for the treatment of breast cancer by lncRNA targeting neddylation modification.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , RNA Antissenso , RNA Longo não Codificante/genética , Neoplasias da Mama/genética , Apoptose/genética , Proliferação de Células/genética , Proteína Forkhead Box O1/genética , Citocromo P-450 CYP1B1
2.
Front Genet ; 12: 659500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079581

RESUMO

Background: As Oryza sativa ssp. indica and Oryza sativa ssp. japonica are the two major subspecies of Asian cultivated rice, the adaptative evolution of these varieties in divergent environments is an important topic in both theoretical and practical studies. However, the cell type-specific differentiation between indica and japonica rice varieties in response to divergent habitat environments, which facilitates an understanding of the genetic basis underlying differentiation and environmental adaptation between rice subspecies at the cellular level, is little known. Methods: We analyzed a published single-cell RNA sequencing dataset to explore the differentially expressed genes between indica and japonica rice varieties in each cell type. To estimate the relationship between cell type-specific differentiation and environmental adaptation, we focused on genes in the WRKY, NAC, and BZIP transcription factor families, which are closely related to abiotic stress responses. In addition, we integrated five bulk RNA sequencing datasets obtained under conditions of abiotic stress, including cold, drought and salinity, in this study. Furthermore, we analyzed quiescent center cells in rice root tips based on orthologous markers in Arabidopsis. Results: We found differentially expressed genes between indica and japonica rice varieties with cell type-specific patterns, which were enriched in the pathways related to root development and stress reposes. Some of these genes were members of the WRKY, NAC, and BZIP transcription factor families and were differentially expressed under cold, drought or salinity stress. In addition, LOC_Os01g16810, LOC_Os01g18670, LOC_Os04g52960, and LOC_Os08g09350 may be potential markers of quiescent center cells in rice root tips. Conclusion: These results identified cell type-specific differentially expressed genes between indica-japonica rice varieties that were related to various environmental stresses and provided putative markers of quiescent center cells. This study provides new clues for understanding the development and physiology of plants during the process of adaptative divergence, in addition to identifying potential target genes for the improvement of stress tolerance in rice breeding applications.

3.
J Cell Physiol ; 236(9): 6472-6480, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33559170

RESUMO

The melanocortin receptor accessory protein 2 (MRAP2) plays an essential role in the regulation of metabolic homeostasis and deletion of which results in severe obesity syndrome in mice and human. Mammalian MRAP2 is recognized as an endogenous physiological mediator through the potentiation of the MC4R signaling in vivo. Two isoforms of MRAP2 are identified in zebrafish genome, zMRAP2a and zMRAP2b. However, the mechanism of assembling dual topology and the regulatory roles of each complex on the melanocortin cascades remains unclear. In this study, we showed the bidirectional homo- and hetero-dimeric topologies of two zebrafish MRAP2 isoforms on the plasma membrane. Orientation fixed chimeric proteins could affect the trafficking and pharmacological properties of zMC4R signaling. Reciprocal replacement of zMRAP2a and zMRAP2b proteins elucidated the major participation of the carboxyl terminal as the functional domain for modulating zMC4R signaling. Our findings revealed the complex and dynamic conformational regulation of dual zebrafish MRAP2 proteins in vitro.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Multimerização Proteica , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , AMP Cíclico/biossíntese , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Transdução de Sinais , Proteínas de Peixe-Zebra/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA