Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(5): eaax8254, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32064339

RESUMO

Plant-microbe interactions are mediated by signaling compounds that control vital plant functions, such as nodulation, defense, and allelopathy. While interruption of signaling is typically attributed to biological processes, potential abiotic controls remain less studied. Here, we show that higher organic carbon (OC) contents in soils repress flavonoid signals by up to 70%. Furthermore, the magnitude of repression is differentially dependent on the chemical structure of the signaling molecule, the availability of metal ions, and the source of the plant-derived OC. Up to 63% of the signaling repression occurs between dissolved OC and flavonoids rather than through flavonoid sorption to particulate OC. In plant experiments, OC interrupts the signaling between a legume and a nitrogen-fixing microbial symbiont, resulting in a 75% decrease in nodule formation. Our results suggest that soil OC decreases the lifetime of flavonoids underlying plant-microbe interactions.


Assuntos
Carbono/metabolismo , Flavonoides/metabolismo , Medicago sativa/metabolismo , Microbiologia do Solo , Metais/metabolismo , Minerais/metabolismo , Nitrogênio/metabolismo , Fenômenos Fisiológicos Vegetais , Solo/química
2.
ACS Synth Biol ; 7(3): 903-911, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29366321

RESUMO

Fluorescent proteins are ubiquitous tools that are used to monitor the dynamic functions of natural and synthetic genetic circuits. However, these visual reporters can only be used in transparent settings, a limitation that complicates nondisruptive measurements of gene expression within many matrices, such as soils and sediments. We describe a new ratiometric gas reporting method for nondisruptively monitoring gene expression within hard-to-image environmental matrices. With this approach, C2H4 is continuously synthesized by ethylene forming enzyme to provide information on viable cell number, and CH3Br is conditionally synthesized by placing a methyl halide transferase gene under the control of a conditional promoter. We show that ratiometric gas reporting enables the creation of Escherichia coli biosensors that report on acylhomoserine lactone (AHL) autoinducers used for quorum sensing by Gram-negative bacteria. Using these biosensors, we find that an agricultural soil decreases the bioavailable concentration of a long-chain AHL up to 100-fold. We also demonstrate that these biosensors can be used in soil to nondisruptively monitor AHLs synthesized by Rhizobium leguminosarum and degraded by Bacillus thuringiensis. Finally, we show that this new reporting approach can be used in Shewanella oneidensis, a bacterium that lives in sediments.


Assuntos
Gases/metabolismo , Expressão Gênica , Microbiologia do Solo , Solo , Bacillus thuringiensis/metabolismo , Etilenos/metabolismo , Genes Reporter , Lactonas/metabolismo , Shewanella/metabolismo , Temperatura , Volatilização
3.
Environ Sci Technol ; 50(16): 8750-9, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27415416

RESUMO

Traditional visual reporters of gene expression have only very limited use in soils because their outputs are challenging to detect through the soil matrix. This severely restricts our ability to study time-dependent microbial gene expression in one of the Earth's largest, most complex habitats. Here we describe an approach to report on dynamic gene expression within a microbial population in a soil under natural water levels (at and below water holding capacity) via production of methyl halides using a methyl halide transferase. As a proof-of-concept application, we couple the expression of this gas reporter to the conjugative transfer of a bacterial plasmid in a soil matrix and show that gas released from the matrix displays a strong correlation with the number of transconjugant bacteria that formed. Gas reporting of gene expression will make possible dynamic studies of natural and engineered microbes within many hard-to-image environmental matrices (soils, sediments, sludge, and biomass) at sample scales exceeding those used for traditional visual reporting.


Assuntos
Solo , Transferases , Biomassa , Genes Microbianos , Microbiologia do Solo
4.
ACS Omega ; 1(2): 226-233, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-29938248

RESUMO

The presence of charcoal in soil triggers a range of biological effects that are not yet predictable, in part because it interferes with the functioning of chemical signals that microbes release into their environment to communicate. We do not fully understand the mechanisms by which charcoal alters the biologically available concentrations of these intercellular signals. Recently, charcoal has been shown to sorb the signaling molecules that microbes release, rendering them ineffective for intercellular communication. Here, we investigate a second, potentially more important mechanism of interference: signaling-molecule hydrolysis driven by charcoal-induced soil pH changes. We examined the effects of 10 charcoals on the bioavailable concentration of an acyl-homoserine lactone (AHL) used by many Gram-negative bacteria for cell-cell communication. We show that charcoals decrease the level of bioavailable AHL through sorption and pH-dependent hydrolysis of the lactone ring. We then built a quantitative model that predicts the half-lives of different microbial signaling compounds in the presence of charcoals varying in pH and surface area. Our model results suggest that the chemical effects of charcoal on pH-sensitive bacterial AHL signals will be fundamentally distinct from effects on pH-insensitive fungal signals, potentially leading to shifts in microbial community structures.

5.
Environ Sci Technol ; 47(20): 11496-503, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24066613

RESUMO

Charcoal has a long soil residence time, which has resulted in its production and use as a carbon sequestration technique (biochar). A range of biological effects can be triggered by soil biochar that can positively and negatively influence carbon storage, such as changing the decomposition rate of organic matter and altering plant biomass production. Sorption of cellular signals has been hypothesized to underlie some of these effects, but it remains unknown whether the binding of biochemical signals occurs, and if so, on time scales relevant to microbial growth and communication. We examined biochar sorption of N-3-oxo-dodecanoyl-L-homoserine lactone, an acyl-homoserine lactone (AHL) intercellular signaling molecule used by many gram-negative soil microbes to regulate gene expression. We show that wood biochars disrupt communication within a growing multicellular system that is made up of sender cells that synthesize AHL and receiver cells that express green fluorescent protein in response to an AHL signal. However, biochar inhibition of AHL-mediated cell-cell communication varied, with the biochar prepared at 700 °C (surface area of 301 m(2)/g) inhibiting cellular communication 10-fold more than an equivalent mass of biochar prepared at 300 °C (surface area of 3 m(2)/g). These findings provide the first direct evidence that biochars elicit a range of effects on gene expression dependent on intercellular signaling, implicating the method of biochar preparation as a parameter that could be tuned to regulate microbial-dependent soil processes, like nitrogen fixation and pest attack of root crops.


Assuntos
Bactérias/metabolismo , Carvão Vegetal/metabolismo , Transdução de Sinais , Acil-Butirolactonas/isolamento & purificação , Adsorção , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Temperatura
6.
ACS Synth Biol ; 1(12): 583-9, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23656280

RESUMO

Dramatic improvements to computational, robotic, and biological tools have enabled genetic engineers to conduct increasingly sophisticated experiments. Further development of biological tools offers a route to bypass complex or expensive mechanical operations, thereby reducing the time and cost of highly parallelized experiments. Here, we engineer a system based on bacteriophage P1 to transfer DNA from one E. coli cell to another, bypassing the need for intermediate DNA isolation (e.g., minipreps). To initiate plasmid transfer, we refactored a native phage element into a DNA module capable of heterologously inducing phage lysis. After incorporating known cis-acting elements, we identified a novel cis-acting element that further improves transduction efficiency, exemplifying the ability of synthetic systems to offer insight into native ones. The system transfers DNAs up to 25 kilobases, the maximum assayed size, and operates well at microliter volumes, enabling manipulation of most routinely used DNAs. The system's large DNA capacity and physical coupling of phage particles to phagemid DNA suggest applicability to biosynthetic pathway evolution, functional proteomics, and ultimately, diverse molecular biology operations including DNA fabrication.


Assuntos
Bacteriófago P1/genética , DNA/genética , Engenharia Genética/métodos , Plasmídeos/genética , Escherichia coli/genética , Vetores Genéticos/genética , Proteoma/genética , Transcrição Gênica/genética , Transdução Genética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...