Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 1854, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388014

RESUMO

X-chromosome inactivation and X-upregulation are the fundamental modes of chromosome-wide gene regulation that collectively achieve dosage compensation in mammals, but the regulatory link between the two remains elusive and the X-upregulation dynamics are unknown. Here, we use allele-resolved single-cell RNA-seq combined with chromatin accessibility profiling and finely dissect their separate effects on RNA levels during mouse development. Surprisingly, we uncover that X-upregulation elastically tunes expression dosage in a sex- and lineage-specific manner, and moreover along varying degrees of X-inactivation progression. Male blastomeres achieve X-upregulation upon zygotic genome activation while females experience two distinct waves of upregulation, upon imprinted and random X-inactivation; and ablation of Xist impedes female X-upregulation. Female cells carrying two active X chromosomes lack upregulation, yet their collective RNA output exceeds that of a single hyperactive allele. Importantly, this conflicts the conventional dosage compensation model in which naïve female cells are initially subject to biallelic X-upregulation followed by X-inactivation of one allele to correct the X dosage. Together, our study provides key insights to the chain of events of dosage compensation, explaining how transcript copy numbers can remain remarkably stable across developmental windows wherein severe dose imbalance would otherwise be experienced by the cell.


Assuntos
Mecanismo Genético de Compensação de Dose , RNA Longo não Codificante , Alelos , Animais , Feminino , Masculino , Mamíferos/genética , Camundongos , RNA Longo não Codificante/genética , Regulação para Cima , Cromossomo X/genética , Inativação do Cromossomo X/genética
3.
J Neuroinflammation ; 19(1): 20, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062962

RESUMO

BACKGROUND: Fluorescent reporter labeling and promoter-driven Cre-recombinant technologies have facilitated cellular investigations of physiological and pathological processes, including the widespread use of the Cx3cr1CreER-Eyfp/wt mouse strain for studies of microglia. METHODS: Immunohistochemistry, Flow Cytometry, RNA sequencing and whole-genome sequencing were used to identify the subpopulation of microglia in Cx3cr1CreER-Eyfp/wt mouse brains. Genetically mediated microglia depletion using Cx3cr1CreER-Eyfp/wtRosa26DTA/wt mice and CSF1 receptor inhibitor PLX3397 were used to deplete microglia. Primary microglia proliferation and migration assay were used for in vitro studies. RESULTS: We unexpectedly identified a subpopulation of microglia devoid of genetic modification, exhibiting higher Cx3cr1 and CX3CR1 expression than Cx3cr1CreER-Eyfp/wtCre+Eyfp+ microglia in Cx3cr1CreER-Eyfp/wt mouse brains, thus termed Cx3cr1highCre-Eyfp- microglia. This subpopulation constituted less than 1% of all microglia under homeostatic conditions, but after Cre-driven DTA-mediated microglial depletion, Cx3cr1highCre-Eyfp- microglia escaped depletion and proliferated extensively, eventually occupying one-third of the total microglial pool. We further demonstrated that the Cx3cr1highCre-Eyfp- microglia had lost their genetic heterozygosity and become homozygous for wild-type Cx3cr1. Therefore, Cx3cr1highCre-Eyfp- microglia are Cx3cr1wt/wtCre-Eyfp-. Finally, we demonstrated that CX3CL1-CX3CR1 signaling regulates microglial repopulation both in vivo and in vitro. CONCLUSIONS: Our results raise a cautionary note regarding the use of Cx3cr1CreER-Eyfp/wt mouse strains, particularly when interpreting the results of fate mapping, and microglial depletion and repopulation studies.


Assuntos
Microglia , Transdução de Sinais , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo
4.
Mol Cell ; 80(3): 541-553.e5, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33068522

RESUMO

To address how genetic variation alters gene expression in complex cell mixtures, we developed direct nuclear tagmentation and RNA sequencing (DNTR-seq), which enables whole-genome and mRNA sequencing jointly in single cells. DNTR-seq readily identified minor subclones within leukemia patients. In a large-scale DNA damage screen, DNTR-seq was used to detect regions under purifying selection and identified genes where mRNA abundance was resistant to copy-number alteration, suggesting strong genetic compensation. mRNA sequencing (mRNA-seq) quality equals RNA-only methods, and the low positional bias of genomic libraries allowed detection of sub-megabase aberrations at ultra-low coverage. Each cell library is individually addressable and can be re-sequenced at increased depth, allowing multi-tiered study designs. Additionally, the direct tagmentation protocol enables coverage-independent estimation of ploidy, which can be used to identify cell singlets. Thus, DNTR-seq directly links each cell's state to its corresponding genome at scale, enabling routine analysis of heterogeneous tumors and other complex tissues.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Sequência de Bases/genética , Linhagem Celular Tumoral , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , RNA/genética , RNA Mensageiro/genética , Análise de Sequência de DNA/métodos
5.
Neurooncol Adv ; 2(1): vdaa061, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642713

RESUMO

BACKGROUND: Glioblastomas display a high level of intratumoral heterogeneity with regard to both genetic and histological features. Within single tumors, subclones have been shown to communicate with each other to affect overall tumor growth. The aim of this study was to broaden the understanding of interclonal communication in glioblastoma. METHODS: We have used the U-343 model, consisting of U-343 MG, U-343 MGa, U-343 MGa 31L, and U-343 MGa Cl2:6, a set of distinct glioblastoma cell lines that have been derived from the same tumor. We characterized these with regard to temozolomide sensitivity, protein secretome, gene expression, DNA copy number, and cancer cell phenotypic traits. Furthermore, we performed coculture and conditioned media-based experiments to model cell-to-cell signaling in a setting of intratumoral heterogeneity. RESULTS: Temozolomide treatment of a coculture composed of all 4 U-343 cell lines presents a tumor relapse model where the least sensitive population, U-343 MGa 31L, outlives the others. Interestingly, the U-343 cell lines were shown to have distinct gene expression signatures and phenotypes although they were derived from a single tumor. The DNA copy number analysis revealed both common and unique alterations, indicating the evolutionary relationship between the cells. Moreover, these cells were found to communicate and affect each other's proliferation, both via contact-dependent and -independent interactions, where NOTCH1, TGFBI, and ADAMTS1 signaling effects were involved, respectively. CONCLUSIONS: These results provide insight into how complex the signaling events may prove to be in a setting of intratumoral heterogeneity in glioblastoma and provide a map for future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...