Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061065

RESUMO

We report the pressure (P) effect on the superconducting transition temperatureTcand the upper critical fieldµ0Hc2of infinite-layer Nd0.8Sr0.2NiO2thin films by measuring the electrical transport properties under various hydrostatic pressures to 4.6 GPa. At ambient pressure, it shows the clear superconducting transition withTc∼ 10 K. Based on the evolution of resistanceR(T), we found that theTcis monotonically enhanced to ∼14 K upon increasing pressure to 2.9 GPa. The constructed temperature-pressure phase diagram indicates that the calculated slope dTc/dPis about 1.14 K GPa-1and the superconductingTcshows no signatures of saturation with pressure. It thus gives the possibility to further enhanceTcby employing higher pressures or heterostructure engineering. In addition, the normalized slope of upper critical fieldµ0Hc2(0) implies that the electron correlations are gradually decreasing with pressure, which exhibits an opposite evolution with superconductingTc. Our work further confirms the positive pressure effects in nickelate superconductors and gives more insight to further enhance its superconducting transition temperature.

2.
Nat Commun ; 13(1): 6348, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289236

RESUMO

The electronic instabilities in CsV3Sb5 are believed to originate from the V 3d-electrons on the kagome plane, however the role of Sb 5p-electrons for 3-dimensional orders is largely unexplored. Here, using resonant tender X-ray scattering and high-pressure X-ray scattering, we report a rare realization of conjoined charge density waves (CDWs) in CsV3Sb5, where a 2 × 2 × 1 CDW in the kagome sublattice and a Sb 5p-electron assisted 2 × 2 × 2 CDW coexist. At ambient pressure, we discover a resonant enhancement on Sb L1-edge (2s→5p) at the 2 × 2 × 2 CDW wavevectors. The resonance, however, is absent at the 2 × 2 × 1 CDW wavevectors. Applying hydrostatic pressure, CDW transition temperatures are separated, where the 2 × 2 × 2 CDW emerges 4 K above the 2 × 2 × 1 CDW at 1 GPa. These observations demonstrate that symmetry-breaking phases in CsV3Sb5 go beyond the minimal framework of kagome electronic bands near van Hove filling.

3.
Nat Commun ; 13(1): 4367, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902566

RESUMO

The successful synthesis of superconducting infinite-layer nickelate thin films with the highest Tc ≈ 15 K has ignited great enthusiasm for this material class as potential analogs of the high-Tc cuprates. Pursuing a higher Tc is always an imperative task in studying a new superconducting material system. Here we report high-quality Pr0.82Sr0.18NiO2 thin films with Tconset ≈ 17 K synthesized by carefully tuning the amount of CaH2 in the topotactic chemical reduction and the effect of pressure on its superconducting properties by measuring electrical resistivity under various pressures in a cubic anvil cell apparatus. We find that the onset temperature of the superconductivity, Tconset, can be enhanced monotonically from ~17 K at ambient pressure to ~31 K at 12.1 GPa without showing signatures of saturation upon increasing pressure. This encouraging result indicates that the Tc of infinite-layer nickelates superconductors still has room to go higher and it can be further boosted by applying higher pressures or strain engineering in the heterostructure films.

4.
Nat Commun ; 13(1): 2975, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624231

RESUMO

We report an unusual pressure-induced superconducting state that coexists with an antiferromagnetic ordering of Eu2+ moments and shows a large upper critical field comparable to the Pauli paramagnetic limit in EuTe2. In concomitant with the emergence of superconductivity with Tc ≈ 3-5 K above Pc ≈ 6 GPa, the antiferromagnetic transition temperature TN(P) experiences a quicker rise with the slope increased dramatically from dTN/dP = 0.85(14) K/GPa for P ≤ Pc to 3.7(2) K/GPa for P ≥ Pc. Moreover, the superconducting state can survive in the spin-flop state with a net ferromagnetic component of the Eu2+ sublattice under moderate magnetic fields µ0H ≥ 2 T. Our findings establish the pressurized EuTe2 as a rare magnetic superconductor possessing an intimated interplay between magnetism and superconductivity.

5.
Phys Rev Lett ; 128(18): 187001, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594110

RESUMO

The Mn-based superconductor is rare owing to the strong magnetic pair-breaking effect. Here we report on the discovery of pressure-induced superconductivity in KMn_{6}Bi_{5}, which becomes the first ternary Mn-based superconductor. At ambient pressure, the quasi-one-dimensional KMn_{6}Bi_{5} is an antiferromagnetic metal with T_{N}≈75 K. By measuring resistance and ac magnetic susceptibility under hydrostatic pressures up to 14.2 GPa in a cubic anvil cell apparatus, we find that its antiferromagnetic transition can be suppressed completely at a critical pressure of P_{c}≈13 GPa, around which bulk superconductivity emerges and displays a superconducting dome with the maximal T_{c}^{onset}=9.3 K achieved at about 14 GPa. The close proximity of superconductivity to a magnetic instability in the temperature-pressure phase diagram of KMn_{6}Bi_{5} and an unusually large µ_{0}H_{c2}(0) exceeding the Pauli paramagnetic limit suggests an unconventional magnetism-mediated paring mechanism. In contrast to the binary MnP, the flexibility of the crystal structure and chemical compositions in the ternary AMn_{6}Bi_{5} (A=alkali metal) can open a new avenue for finding more Mn-based superconductors.

6.
Nat Commun ; 12(1): 4949, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400621

RESUMO

A recent focus of quantum spin liquid (QSL) studies is how disorder/randomness in a QSL candidate affects its true magnetic ground state. The ultimate question is whether the QSL survives disorder or the disorder leads to a "spin-liquid-like" state, such as the proposed random-singlet (RS) state. Since disorder is a standard feature of most QSL candidates, this question represents a major challenge for QSL candidates. YbMgGaO4, a triangular lattice antiferromagnet with effective spin-1/2 Yb3+ions, is an ideal system to address this question, since it shows no long-range magnetic ordering with Mg/Ga site disorder. Despite the intensive study, it remains unresolved as to whether YbMgGaO4 is a QSL or in the RS state. Here, through ultralow-temperature thermal conductivity and magnetic torque measurements, plus specific heat and DC magnetization data, we observed a residual κ0/T term and series of quantum spin state transitions in the zero temperature limit for YbMgGaO4. These observations strongly suggest that a QSL state with itinerant excitations and quantum spin fluctuations survives disorder in YbMgGaO4.

7.
Phys Rev Lett ; 126(25): 256401, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34241529

RESUMO

Impurity pinning has long been discussed to have a profound effect on the dynamics of an incommensurate charge density wave (CDW), which would otherwise slide through the lattice without resistance. Here, we visualize the impurity pinning evolution of the CDW in ZrTe_{3} using the variable temperature scanning tunneling microscopy. At low temperatures, we observe a quasi-1D incommensurate CDW modulation moderately correlated to the impurity positions, indicating a weak impurity pinning. As we raise the sample temperature, the CDW modulation gets progressively weakened and distorted, while the correlation with the impurities becomes stronger. Above the CDW transition temperature, short-range modulations persist with the phase almost all pinned by impurities. The evolution from weak to strong impurity pinning through the CDW transition can be understood as a result of losing phase rigidity.

8.
Phys Rev Lett ; 126(24): 247001, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34213920

RESUMO

CsV_{3}Sb_{5} is a newly discovered Z_{2} topological kagome metal showing the coexistence of a charge-density-wave (CDW)-like order at T^{*}=94 K and superconductivity (SC) at T_{c}=2.5 K at ambient pressure. Here, we study the interplay between CDW and SC in CsV_{3}Sb_{5} via measurements of resistivity, dc and ac magnetic susceptibility under various pressures up to 6.6 GPa. We find that the CDW transition decreases with pressure and experience a subtle modification at P_{c1}≈0.6-0.9 GPa before it vanishes completely at P_{c2}≈2 GPa. Correspondingly, T_{c}(P) displays an unusual M-shaped double dome with two maxima around P_{c1} and P_{c2}, respectively, leading to a tripled enhancement of T_{c} to about 8 K at 2 GPa. The obtained temperature-pressure phase diagram resembles those of unconventional superconductors, illustrating an intimated competition between CDW-like order and SC. The competition is found to be particularly strong for the intermediate pressure range P_{c1}≤P≤P_{c2} as evidenced by the broad superconducting transition and reduced superconducting volume fraction. The modification of CDW order around P_{c1} has been discussed based on the band structure calculations. This work not only demonstrates the potential to raise T_{c} of the V-based kagome superconductors, but also offers more insights into the rich physics related to the electron correlations in this novel family of topological kagome metals.

9.
Sci Adv ; 7(12)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33731356

RESUMO

Metal-organic frameworks (MOFs), which are self-assemblies of metal ions and organic ligands, provide a tunable platform to search a new state of matter. A two-dimensional (2D) perfect kagome lattice, whose geometrical frustration is a key to realizing quantum spin liquids, has been formed in the π - d conjugated 2D MOF [Cu3(C6S6)] n (Cu-BHT). The recent discovery of its superconductivity with a critical temperature T c of 0.25 kelvin raises fundamental questions about the nature of electron pairing. Here, we show that Cu-BHT is a strongly correlated unconventional superconductor with extremely low superfluid density. A nonexponential temperature dependence of superfluid density is observed, indicating the possible presence of superconducting gap nodes. The magnitude of superfluid density is much smaller than those in conventional superconductors and follows the Uemura's relation of strongly correlated superconductors. These results imply that the unconventional superconductivity in Cu-BHT originates from electron correlations related to spin fluctuations of kagome lattice.

10.
Phys Rev Lett ; 123(4): 047201, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491259

RESUMO

The n-type HgCr_{2}Se_{4} exhibits a sharp semiconductor-to-metal transition (SMT) in resistivity accompanying the ferromagnetic order at T_{C}=106 K. Here, we investigate the effects of pressure and magnetic field on the concomitant SMT and ferromagnetic order by measuring resistivity, dc and ac magnetic susceptibility, as well as single-crystal neutron diffraction under various pressures up to 8 GPa and magnetic fields up to 8 T. Our results demonstrate that the ferromagnetic metallic ground state of n-type HgCr_{2}Se_{4} is destabilized and gradually replaced by an antiferromagnetic, most likely a spiral magnetic, and insulating ground state upon the application of high pressure. On the other hand, the application of external magnetic fields can restore the ferromagnetic metallic state again at high pressures, resulting in a colossal magnetoresistance (CMR) as high as ∼ 3×10^{11}% under 5 T and 2 K at 4 GPa. The present study demonstrates that n-type HgCr_{2}Se_{4} is located at a peculiar critical point where the balance of competition between ferromagnetic and antiferromagnetic interactions can be easily tipped by external stimuli, providing a new platform for achieving CMR in a single-valent system.

11.
J Phys Condens Matter ; 31(4): 044001, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30543523

RESUMO

RbGd2Fe4As4O2 is a newly discovered self-hole-doped stoichiometric superconductor, which has a hybrid structure with separated double FeAs layers and exhibits a high superconducting transition temperature T c = 35 K. Here, we report the effect of pressure (P) on its T c and normal-state transport properties by measuring the temperature dependence of resistivity ρ(T) under various pressures up to 14 GPa with a cubic anvil cell apparatus. We found that the T c is suppressed monotonically to ca. 12.5 K upon increasing pressure to 14 GPa with a slope change of T c(P) at around 4 GPa. In addition, the low-temperature normal-state ρ(T), which is proportional to T n , also evolves gradually from a non-Fermi-liquid with n = 1 at ambient pressure to a Fermi liquid with n = 2 at P ⩾ 4 GPa. Accompanying with the non-Fermi-liquid to Fermi-liquid crossover, the quadratic temperature coefficient of resistivity, which reflects the effective mass of charge carriers, also experiences a significant reduction as commonly observed in the vicinity of a magnetic quantum critical point (QCP). Our results indicate that the stoichiometric RbGd2Fe4As4O2 at ambient pressure might be located near a QCP such that the enhanced critical spin fluctuations lead to high-T c superconductivity. The application of pressure should broaden the electronic bandwidth and weaken the spin fluctuations, and then restore a Fermi-liquid ground state with lower T c.

12.
RSC Adv ; 9(46): 26831-26837, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35528554

RESUMO

We evaluate the influence of pressure on the thermoelectric power factors PF ≡ S 2 σ of pristine and Na-doped SnSe crystals by measuring their electrical conductivity σ(T) and Seebeck coefficient S(T) up to ∼22 kbar with a self-clamped piston-cylinder cell. For both cases, σ(T) is enhanced while S(T) reduced with increasing pressure as expected, but their imbalanced variations lead to a monotonic enhancement of PF under pressure. For pristine SnSe, σ(290 K) increases by ∼4 times from ∼10.1 to 38 S cm-1, while S(290 K) decreases by only ∼12% from 474 to 415 µV K-1, leading to about three-fold enhancement of PF from 2.24 to 6.61 µW cm-1 K-2, which is very close to the optimal value of SnSe above the structural transition at ∼800 K at ambient pressure. In comparison, the PF of Na-doped SnSe at 290 K is enhanced moderately by ∼30% up to 20 kbar. In contrast, the PF of isostructural black phosphorus with a simple band structure was found to decrease under pressure. The comparison with black phosphorus indicates that the multi-valley valence band structure of SnSe is beneficial for the enhancement of PF by retaining a large Seebeck coefficient under pressure. Our results also provide experimental confirmation on the previous theoretical prediction that high pressure can be used to optimize the thermoelectric efficiency of SnSe.

13.
J Phys Condens Matter ; 30(13): 135801, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29443004

RESUMO

We report millimeter-sized Nd5Pb3 single crystals grown out of a Nd-Co flux. We experimentally study the magnetic order of Nd5Pb3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1 = 44 K and T N2 = 8 K. The magnetic cells can be described with a propagation vector [Formula: see text]. Cooling below T N1, Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupled antiferromagnetically along the a-axis for the [Formula: see text] magnetic domain. Cooling below T N2, Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2, no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd5Pb3 has the same electronic structure as does Y5Si3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5Pb3 (R = rare earth) can be a materials playground for the study of magnetic electrides. This deserves further study after experimental confirmation of the presence of anionic electrons.

14.
Nat Commun ; 9(1): 380, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371605

RESUMO

In order to elucidate pressure-induced second superconducting phase (SC-II) in A x Fe2-ySe2 (A = K, Rb, Cs, and Tl) having an intrinsic phase separation, we perform a detailed high-pressure magnetotransport study on the isoelectronic, phase-pure (Li1-xFe x )OHFe1-ySe single crystals. Here we show that its ambient-pressure superconducting phase (SC-I) with a critical temperature Tc ≈ 40 K is suppressed gradually to below 2 K and an SC-II phase emerges above Pc ≈ 5 GPa with Tc increasing progressively to above 50 K up to 12.5 GPa. Our high-precision resistivity data uncover a sharp transition of the normal state from Fermi liquid for SC-I to non-Fermi liquid for SC-II phase. In addition, the reemergence of high-Tc SC-II is found to accompany with a concurrent enhancement of electron carrier density. Without structural transition below 10 GPa, the observed SC-II with enhanced carrier density should be ascribed to an electronic origin presumably associated with pressure-induced Fermi surface reconstruction.

15.
J Phys Condens Matter ; 29(45): 455603, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29049031

RESUMO

K2Cr3As3 is a newly discovered quasi-1D superconductor with a T c = 6.1 K and an upper critical field µ 0 H c2(0) ≈ 40 T three times larger than the Pauli paramagnetic limit µ 0 H p that is suggestive of a spin-triplet Cooper pairing. In this paper, we have investigated the effects of hydrostatic pressure on its T c and µ 0 H c2 by measuring the ac magnetic susceptibility χ'(T) under magnetic fields at various hydrostatic pressures up to 7.5 GPa. The major findings include: (1) T c is suppressed gradually to below 2 K at 7.5 GPa; (2) the estimated µ 0 H c2(0) decreases dramatically to below µ 0 H p above ~2 GPa and becomes slight lower than the orbital limiting field [Formula: see text] estimated from the initial slope of upper critical field via [Formula: see text] = -0.73T cdH c2/[Formula: see text] in the clean limit; (3) the estimated Maki parameter α = √2[Formula: see text]/H p drops from 4 at ambient pressure to well below 1 at P > 2 GPa, suggesting the crossover from Pauli paramagnetic limiting to orbital limiting in the pair breaking process upon increasing pressure. These observations suggested that the application of hydrostatic pressure could drive K2Cr3As3 away from the ferromagnetic instability and lead to a breakdown of the spin-triplet pairing channel. We have also made a side-by-side comparison and discussed the distinct effects of chemical and physical pressures on the superconducting properties of K2Cr3As3.

16.
Nat Commun ; 8(1): 1143, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29070845

RESUMO

A fundamental issue concerning iron-based superconductivity is the roles of electronic nematicity and magnetism in realising high transition temperature (T c). To address this issue, FeSe is a key material, as it exhibits a unique pressure phase diagram involving non-magnetic nematic and pressure-induced antiferromagnetic ordered phases. However, as these two phases in FeSe have considerable overlap, how each order affects superconductivity remains perplexing. Here we construct the three-dimensional electronic phase diagram, temperature (T) against pressure (P) and isovalent S-substitution (x), for FeSe1-x S x . By simultaneously tuning chemical and physical pressures, against which the chalcogen height shows a contrasting variation, we achieve a complete separation of nematic and antiferromagnetic phases. In between, an extended non-magnetic tetragonal phase emerges, where T c shows a striking enhancement. The completed phase diagram uncovers that high-T c superconductivity lies near both ends of the dome-shaped antiferromagnetic phase, whereas T c remains low near the nematic critical point.

17.
Sci Rep ; 7(1): 3532, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615663

RESUMO

EuFe2As2-based iron pnictides are quite interesting compounds, due to the two magnetic sublattices in them and the tunability to superconductors by chemical doping or application of external pressure. The effects of hydrostatic pressure on the static magnetism in Eu(Fe0.925Co0.075)2As2 are investigated by complementary electrical resistivity, ac magnetic susceptibility and single-crystal neutron diffraction measurements. A specific pressure-temperature (P-T) phase diagram of Eu(Fe0.925Co0.075)2As2 is established. The structural phase transition, as well as the spin-density-wave order of Fe sublattice, is suppressed gradually with increasing pressure and disappears completely above 2.0 GPa. In contrast, the magnetic order of Eu sublattice persists over the whole investigated pressure range up to 14 GPa, yet displaying a non-monotonic variation with pressure. With the increase of the hydrostatic pressure, the magnetic state of Eu evolves from the canted antiferromagnetic structure in the ground state, via a pure ferromagnetic structure under the intermediate pressure, finally to an "unconfirmed" antiferromagnetic structure under the high pressure. The strong ferromagnetism of Eu coexists with the pressure-induced superconductivity around 2 GPa. Comparisons between the P-T phase diagrams of Eu(Fe0.925Co0.075)2As2 and the parent compound EuFe2As2 were also made.

18.
Phys Rev Lett ; 118(14): 147004, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28430492

RESUMO

The importance of electron-hole interband interactions is widely acknowledged for iron-pnictide superconductors with high transition temperatures (T_{c}). However, the absence of hole pockets near the Fermi level of the iron-selenide (FeSe) derived high-T_{c} superconductors raises a fundamental question of whether iron pnictides and chalcogenides have different pairing mechanisms. Here, we study the properties of electronic structure in the high-T_{c} phase induced by pressure in bulk FeSe from magnetotransport measurements and first-principles calculations. With increasing pressure, the low-T_{c} superconducting phase transforms into the high-T_{c} phase, where we find the normal-state Hall resistivity changes sign from negative to positive, demonstrating dominant hole carriers in contrast to other FeSe-derived high-T_{c} systems. Moreover, the Hall coefficient is enlarged and the magnetoresistance exhibits anomalous scaling behaviors, evidencing strongly enhanced interband spin fluctuations in the high-T_{c} phase. These results in FeSe highlight similarities with high-T_{c} phases of iron pnictides, constituting a step toward a unified understanding of iron-based superconductivity.

19.
Phys Rev Lett ; 117(17): 176603, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824456

RESUMO

The perovskite SrIrO_{3} is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn^{4+} for Ir^{4+} in the SrIr_{1-x}Sn_{x}O_{3} perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T_{N}≥225 K. The continuous change of the cell volume as detected by x-ray diffraction and the λ-shape transition of the specific heat on cooling through T_{N} demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below T_{N}. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T_{N} in the same way as proposed by Slater.

20.
Nat Commun ; 7: 13037, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708255

RESUMO

Magnetic and superconducting ground states can compete, cooperate and coexist. MnP provides a compelling and potentially generalizable example of a material where superconductivity and magnetism may be intertwined. Using a synchrotron-based non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and trace its pressure evolution towards superconducting order via measurements in a diamond anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum phase transition as pressure increases the electron kinetic energy. Spins remain local in the disordered phase, and the promotion of superconductivity is likely to emerge from an enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d transition metal compounds in the MnP family, the magnetic ground state switches between antiferromagnet and ferromagnet, providing an additional tuning parameter in probing spin-fluctuation-induced superconductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...