Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 10(10): nwad209, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37928774

RESUMO

Host phylogeny and environment have all been implicated in shaping the gut microbiota and host metabolic traits of mammals. However, few studies have evaluated phylogeny-associated microbial assembly and host metabolic plasticity concurrently, and their relationships on both short-term and evolutionary timescales. We report that the branching order of a gut microbial dendrogram was nearly congruent with phylogenetic relationships of seven rodent species, and this pattern of phylosymbiosis was intact after diverse laboratory manipulations. Laboratory rearing, diet or air temperature (Ta) acclimation induced alterations in gut microbial communities, but could not override host phylogeny in shaping microbial community assembly. A simulative heatwave reduced core microbiota diversity by 26% in these species, and led to an unmatched relationship between the microbiota and host metabolic phenotypes in desert species. Moreover, the similarity of metabolic traits across species at different Tas was not correlated with phylogenetic distance. These data demonstrated that the gut microbial assembly showed strong concordance with host phylogeny and may be shaped by environmental variables, whereas host metabolic traits did not seem to be linked with phylogeny.

2.
Funct Integr Genomics ; 23(4): 344, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991590

RESUMO

Schisandra chinensis is a monoecious plant with unisex flowers. The fruit of S. chinensis is of high medical with economic value. The yield of S. chinensis fruit is related to the ratio of its female and male flowers. However, there is little research on its floral development and sex differentiation. To elucidate the possible mechanism for the sex differentiation of S. chinensis, we collected 18 samples of female and male flowers from three developmental stages and performed a comparative RNA-seq analysis aimed at identifying differentially expressed genes (DEGs) that may be related to sex differentiation. The results showed 936, 7179, and 6890 differentially expressed genes between female and male flowers at three developmental stages, respectively, and 466 candidate genes may play roles in sex differentiation. KEGG analysis showed genes involved in the flavonoid biosynthesis pathway and DNA replication pathway were essential for the development of female flowers. 51 MADS-box genes and 10 YABBY genes were identified in S. chinensis. The DEGs analysis indicated that MADS-box and YABBY genes were strongly related to the sex determination of S. chinensis. RT-qPCR confirmed the RNA-seq results of 20 differentially expressed genes, including three male-biased genes and 17 female-biased genes. A possible regulatory model of sex differentiation in S. chinensis was proposed according to our results. This study helps reveal the sex-differentiation mechanism of S. chinensis and lays the foundation for regulating the male-female ratio of S. chinensis in the future.


Assuntos
Schisandra , Schisandra/genética , Diferenciação Sexual , Perfilação da Expressão Gênica , Transcriptoma , Flores , Regulação da Expressão Gênica de Plantas
3.
Zool Res ; 44(6): 1052-1063, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37872006

RESUMO

Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation, thus enabling range expansion. In contrast, narrow-range species are confined to restricted geographical areas and are ecologically adapted to narrow environmental conditions, thus limiting their ability to expand into novel environments. However, the genomic mechanisms underlying the differentiation between closely related species with varying distribution ranges remain poorly understood. The Niviventer niviventer species complex (NNSC), consisting of highly abundant wild rats in Southeast Asia and China, offers an excellent opportunity to investigate these questions due to the presence of both widespread and narrow-range species that are phylogenetically closely related. In the present study, we combined ecological niche modeling with phylogenetic analysis, which suggested that sister species cannot be both widespread and dominant within the same geographical region. Moreover, by assessing heterozygosity, linkage disequilibrium decay, and Tajima's D analysis, we found that widespread species exhibited higher genetic diversity than narrow-range species. In addition, by exploring the "genomic islands of speciation", we identified 13 genes in highly divergent regions that were shared by the two widespread species, distinguishing them from their narrow-range counterparts. Functional annotation analysis indicated that these genes are involved in nervous system development and regulation. The adaptive evolution of these genes likely played an important role in the speciation of these widespread species.


Assuntos
Meio Ambiente , Murinae , Ratos , Animais , Filogenia , Murinae/genética , China , Genômica
4.
BMC Biol ; 21(1): 182, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649052

RESUMO

BACKGROUND: Environmental conditions vary among deserts across the world, spanning from hyper-arid to high-elevation deserts. However, prior genomic studies on desert adaptation have focused on desert and non-desert comparisons overlooking the complexity of conditions within deserts. Focusing on the adaptation mechanisms to diverse desert environments will advance our understanding of how species adapt to extreme desert environments. The hairy-footed jerboas are well adapted to diverse desert environments, inhabiting high-altitude arid regions, hyper-arid deserts, and semi-deserts, but the genetic basis of their adaptation to different deserts remains unknown. RESULTS: Here, we sequenced the whole genome of 83 hairy-footed jerboas from distinct desert zones in China to assess how they responded under contrasting conditions. Population genomics analyses reveal the existence of three species in hairy-footed jerboas distributed in China: Dipus deasyi, Dipus sagitta, and Dipus sowerbyi. Analyses of selection between high-altitude desert (elevation ≥ 3000m) and low-altitude desert (< 500m) populations identified two strongly selected genes, ATR and HIF1AN, associated with intense UV radiation and hypoxia in high-altitude environments. A number of candidate genes involved in energy and water homeostasis were detected in the comparative genomic analyses of hyper-arid desert (average annual precipitation < 70mm) and arid desert (< 200mm) populations versus semi-desert (> 360mm) populations. Hyper-arid desert animals also exhibited stronger adaptive selection in energy homeostasis, suggesting water and resource scarcity may be the main drivers of desert adaptation in hairy-footed jerboas. CONCLUSIONS: Our study challenges the view of deserts as homogeneous environments and shows that distinct genomic adaptations can be found among desert animals depending on their habitats.


Assuntos
Aclimatação , Roedores , Animais , Sequenciamento Completo do Genoma , Meio Ambiente , Altitude
5.
Commun Biol ; 6(1): 33, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635382

RESUMO

Phenotypes associated with metabolism and water retention are thought to be key to the adaptation of desert species. However, knowledge on the genetic changes and selective regimes on the similar and divergent ways to desert adaptation in sympatric and phylogenetically close desert organisms remains limited. Here, we generate a chromosome level genome assembly for Northern three-toed jerboa (Dipus sagitta) and three other high-quality genome assemblies for Siberian jerboa (Orientallactaga sibirica), Midday jird (Meriones meridianus), and Desert hamster (Phodopus roborovskii). Genomic analyses unveil that desert adaptation of the four species mainly result from similar metabolic pathways, such as arachidonic acid metabolism, thermogenesis, oxidative phosphorylation, insulin related pathway, DNA repair and protein synthesis and degradation. However, the specific evolved genes in the same adaptative molecular pathway often differ in the four species. We also reveal similar niche selection but different demographic histories and sensitivity to climate changes, which may be related to the diversified genomic adaptative features. In addition, our study suggests that nocturnal rodents have evolved some specific adaptative mechanism to desert environments compared to large desert animals. Our genomic resources will provide an important foundation for further research on desert genetic adaptations.


Assuntos
Aclimatação , Adaptação Fisiológica , Cricetinae , Animais , Adaptação Fisiológica/genética , Termogênese , Gerbillinae , Demografia
6.
Mol Biol Evol ; 40(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36562771

RESUMO

Rare and geographically restricted species may be vulnerable to genetic effects from inbreeding depression in small populations or from genetic swamping through hybridization with common species, but a third possibility is that selective gene flow can restore fitness (genetic rescue). Climate-sensitive pikas (Ochotona spp.) of the Qinghai-Tibetan Plateau (QHTP) and its vicinity have been reduced to residual populations through the movement of climatic zones during the Pleistocene and recent anthropogenic disturbance, whereas the plateau pika (O. curzoniae) remains common. Population-level whole-genome sequencing (n = 142) of six closely related species in the subgenus Ochotona revealed several phases of ancient introgression, lineage replacement, and bidirectional introgression. The strength of gene flow was the greatest from the dominant O. curzoniae to ecologically distinct species in areas peripheral to the QHTP. Genetic analyses were consistent with environmental reconstructions of past population movements. Recurrent periods of introgression throughout the Pleistocene revealed an increase in genetic variation at first but subsequent loss of genetic variation in later phases. Enhanced dispersion of introgressed genomic regions apparently contributed to demographic recovery in three peripheral species that underwent range shifts following climate oscillations on the QHTP, although it failed to drive recovery of northeastern O. dauurica and geographically isolated O. sikimaria. Our findings highlight differences in timescale and environmental background to determine the consequence of hybridization and the unique role of the QHTP in conserving key evolutionary processes of sky island species.


Assuntos
Lagomorpha , Animais , Lagomorpha/genética , Evolução Biológica , Hibridização Genética , Genômica , Demografia
7.
Front Genet ; 13: 1020789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506315

RESUMO

High-altitude environments impose intense stresses on living organisms and drive striking phenotypic and genetic adaptations, such as hypoxia resistance, cold tolerance, and increases in metabolic capacity and body mass. As one of the most successful and dominant mammals on the Qinghai-Tibetan Plateau (QHTP), the plateau pika (Ochotona curzoniae) has adapted to the extreme environments of the highest altitudes of this region and exhibits tolerance to cold and hypoxia, in contrast to closely related species that inhabit the peripheral alpine bush or forests. To explore the potential genetic mechanisms underlying the adaptation of O. curzoniae to a high-altitude environment, we sequenced the heart tissue transcriptomes of adult plateau pikas (comparing specimens from sites at two different altitudes) and Gansu pikas (O. cansus). Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify differentially expressed genes (DEGs) and their primary functions. Key genes and pathways related to high-altitude adaptation were identified. In addition to the biological processes of signal transduction, energy metabolism and material transport, the identified plateau pika genes were mainly enriched in biological pathways such as the negative regulation of smooth muscle cell proliferation, the apoptosis signalling pathway, the cellular response to DNA damage stimulus, and ossification involved in bone maturation and heart development. Our results showed that the plateau pika has adapted to the extreme environments of the QHTP via protection against cardiomyopathy, tissue structure alterations and improvements in the blood circulation system and energy metabolism. These adaptations shed light on how pikas thrive on the roof of the world.

8.
Proc Natl Acad Sci U S A ; 119(49): e2207845119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442115

RESUMO

Asia's rich species diversity has been linked to its Cenozoic geodiversity, including active mountain building and dramatic climatic changes. However, prior studies on the diversification and assembly of Asian faunas have been derived mainly from analyses at taxonomic or geographic scales too limited to offer a comprehensive view of this complex region's biotic evolution. Here, using the class Mammalia, we built historical biogeographic models drawn on phylogenies of 1,543 species occurring across Asia to investigate how and when the mammal diversity in Asian regions and mountain hotspots was assembled. We explore the roles of in situ speciation, colonization, and vicariance and geoclimatic events to explain the buildup of Asia's regional mammal diversity through time. We found that southern Asia has served as the main cradle of Asia's mammal diversity. Present-day species richness in other regions is mainly derived from colonization, but by the Miocene, in situ speciation increased in importance. The high biodiversity present in the mountain hotspots (Himalayas and Hengduan) that flank the Qinghai-Tibetan plateau is a product of high colonization instead of in situ speciation, making them important centers of lineage accumulation. Overall, Neogene was marked by great diversification and migrations across Asia and surrounding continents but Paleogene environments already hosted rich mammal assemblages. Our study revealed that synchronous diversification bursts and biotic turnovers are temporally associated with tectonic events (mountain building, continental collisions) and drastic reorganization of climate (aridification of Asian interior, intensification of Asian monsoons, sea retreat) that took place throughout the Cenozoic in Asia.


Assuntos
Biodiversidade , Mamíferos , Animais , Humanos , Mamíferos/genética , Ásia , Povo Asiático , Clima
9.
Front Plant Sci ; 13: 878263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734262

RESUMO

Most plants of Ligusticum have an important medicinal and economic value with a long history, Ligusticum sinense and L. jeholense ("Gaoben") has long been used in traditional Chinese medicine for the treatment of carminative, dispelling cold, dehumidification, and analgesia. While in the market Conioselinum vaginatum (Xinjiang Gaoben) is substitution for Gaoben, and occupies a higher market share. These three Gaoben-related medicinal materials are similar in morphology, and are difficult to distinguish from each other by the commonly used DNA barcodes. The chloroplast genome has been widely used for molecular markers, evolutionary biology, and barcoding identification. In this study, the complete chloroplast genome sequences of C. vaginatum, L. sinense, and L. jeholense were reported. The results showed that the complete chloroplast genomes of these three species have typical quadripartite structures, which were comprised of 148,664, 148,539, and 148,497 bp. A total of 114 genes were identified, including 81 protein-coding genes (PCGs), 29 tRNA genes, and four rRNA genes. Our study indicated that highly variable region ycf2-trnL and accD-ycf4 that can be used as specific DNA barcodes to distinguish and identify C. vaginatum, L. sinense, and L. jeholense. In addition, phylogenetic study showed that C. vaginatum nested in Ligusticum and as a sister group of L. sinense and L. jeholense, which suggested these two genera are both in need of revision. This study offer valuable information for future research in the identification of Gaoben-related medicinal materials and will benefit for further phylogenetic study of Apiaceae.

10.
Sci Total Environ ; 806(Pt 4): 150944, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655626

RESUMO

The charismatic giant panda (Ailuropoda melanoleuca) is an iconic species of wildlife conservation worldwide. As the most effective measure to protect giant pandas and their habitats, China has established 67 giant panda nature reserves (GPNR) during the last five decades, which also bring benefits to many sympatric medium- and large-bodied mammals (MLM). To better inform the planning of the GPNR network with the view of preserving regional MLM diversity, we investigated the zeta diversity (a novel index to measure species compositional turnover considering the contributions of both rare and common species) patterns (i.e. zeta decline and retention rate curve) of MLMs across 40 GPNRs. The effects of species' body mass and conservation status on the zeta diversity patterns were tested. Further, we applied the multi-site generalized dissimilarity modelling (MS-GDM) framework to explore the impacts of environmental and geographic distances on MLM turnover. The results indicated that there are a core set of 17 MLM species sympatric with the giant panda in the GPNRs. Species' body mass can affect the patterns of zeta decline and retention rate curves, and the number of large-bodied species shared by multiple GPNRs is higher than that of medium-bodied species across zeta orders. The MS-GDM revealed the important roles of difference in habitat heterogeneity and spatial distance between GPNRs in driving MLM turnover. Consequently, we advocate maintaining and increasing the diversity of (natural) habitats in GPNRs to protect giant panda's sympatric MLM diversity. The government should consider optimizing the GPNR network (e.g. incorporating multiple small GPNRs into one single large reserve) to capture the most turnover of MLMs, and the newly-established Giant Panda National Park is relevant to fulfilling this long-term goal.


Assuntos
Ursidae , Animais , China , Conservação dos Recursos Naturais , Ecossistema , Mamíferos
11.
Mol Ecol ; 30(11): 2641-2658, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33817880

RESUMO

Studying the genetic differentiation in a unique geographical area contributes to understanding the process of speciation. Here, we explore the spatial genetic structure and underlying formation mechanism of two congeneric small mammal species (Apodemus draco and A. chevrieri), which are mainly distributed in the mountains surrounding the lowland Sichuan Basin, southwest China. We applied a set of comparative phylogeographical analyses to determine their genetic diversification patterns, combining mitochondrial (Cytb and COI) and nuclear (microsatellite loci) markers, with dense sampling throughout the range (411 A. draco from 21 sites and 191 A. chevrieri from 22 sites). Moreover, we performed three complementary statistical methods to investigate the correlation between genotype and geographical and environmental components, and predicted the potential suitable distributional range under the present and historical climate conditions. Our results suggest that both species have experienced allopatric differentiation and admixture in historical periods, resulting in a ring-shape diversification, under the barrier effect of the Sichuan Basin. We infer that the tectonic events of the Qinghai-Tibetan Plateau and climatic oscillations during the Quaternary played an important role on the genetic divergence of the two species by providing environmental heterogeneity and geographical variation. Our study reveals a case of two sympatric small mammals following a ring-shaped diversification pattern and provides insight into the process of differentiation.


Assuntos
Variação Genética , Mamíferos , Animais , China , DNA Mitocondrial/genética , Mamíferos/genética , Filogenia , Filogeografia
12.
Mol Biol Evol ; 38(5): 1905-1923, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33386846

RESUMO

For organisms to survive and prosper in a harsh environment, particularly under rapid climate change, poses tremendous challenges. Recent studies have highlighted the continued loss of megafauna in terrestrial ecosystems and the subsequent surge of small mammals, such as rodents, bats, lagomorphs, and insectivores. However, the ecological partitioning of these animals will likely lead to large variation in their responses to environmental change. In the present study, we investigated the evolutionary history and genetic adaptations of white-bellied rats (Niviventer Marshall, 1976), which are widespread in the natural terrestrial ecosystems in Asia but also known as important zoonotic pathogen vectors and transmitters. The southeastern Qinghai-Tibet Plateau was inferred as the origin center of this genus, with parallel diversification in temperate and tropical niches. Demographic history analyses from mitochondrial and nuclear sequences of Niviventer demonstrated population size increases and range expansion for species in Southeast Asia, and habitat generalists elsewhere. Unexpectedly, population increases were seen in N. eha, which inhabits the highest elevation among Niviventer species. Genome scans of nuclear exons revealed that among the congeneric species, N. eha has the largest number of positively selected genes. Protein functions of these genes are mainly related to olfaction, taste, and tumor suppression. Extensive genetic modification presents a major strategy in response to global changes in these alpine species.


Assuntos
Distribuição Animal , Mudança Climática , Especiação Genética , Murinae/genética , Filogenia , Altitude , Animais , Clima , Filogeografia , Seleção Genética
13.
Ecol Evol ; 10(19): 10899-10911, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33072304

RESUMO

Understanding how biodiversity components are related under different environmental factors is a fundamental challenge for ecology studies, yet there is little knowledge of this interplay among the biotas, especially small mammals, in karst mountain areas. Here, we examine the elevation patterns of the taxonomic diversity (TD), phylogenetic diversity (PD), and functional diversity (FD) of small mammals in a karst mountain area, the Wuling Mountains, Southwest China, and compare these patterns between taxa (Rodentia and Eulipotyphla) and scales (broad- and narrow-range species). We also disentangle the impacts of the human influence index, net primary productivity (NPP), normalized difference vegetation index (NDVI), annual precipitation (AP), and annual mean temperature (AMT) on these three facets of biodiversity by using structural equation modeling. We recorded a total of 39 small mammal species, including 26 rodents and 13 species of the order Eulipotyphla. Our study shows that the facets of biodiversity are spatially incongruent. Net primary productivity has a positive effect on the three facets for most groups, while the effect of the NDVI is negative for TD and PD in most groups. AMT temperature and AP have negative effects on FD and PD, whereas TD is dependent on the species range scale. The human influence index effect on TD and PD also depends on the species range scale. These findings provide robust evidence that the ecological drivers of biodiversity differ among different biotas and different range scales, and future research should use multifacet approach to determine biodiversity conservation strategies.

14.
Ecol Evol ; 9(12): 7080-7095, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31380035

RESUMO

Species distributed along mountain slopes, facing contrasting habitats in short geographic scale, are of particular interest to test how ecologically based divergent selection promotes phenotypic and genetic disparities as well as to assess isolation-by-environment mechanisms. Here, we conduct the first broad comparative study of phenotypic variation along elevational gradients, integrating a large array of ecological predictors and disentangling population genetic driver processes. The skull form of nine ecologically distinct species distributed over a large altitudinal range (100-4200 m) was compared to assess whether phenotypic divergence is a common phenomenon in small mammals and whether it shows parallel patterns. We also investigated the relative contribution of biotic (competition and predation) and abiotic parameters on phenotypic divergence via mixed models. Finally, we assessed the population genetic structure of a rodent species (Niviventer confucianus) via analysis of molecular variance and FST along three mountain slopes and tested the isolation-by-environment hypothesis using Mantel test and redundancy analysis. We found a consistent phenotypic divergence and marked genetic structure along elevational gradients; however, the species showed mixed patterns of size and skull shape trends across mountain zones. Individuals living at lower altitudes differed greatly in both phenotype and genotype from those living at high elevations, while middle-elevation individuals showed more intermediate forms. The ecological parameters associated with phenotypic divergence along elevation gradients are partly related to species' ecological and evolutionary constraints. Fossorial and solitary animals are mainly affected by climatic factors, while terrestrial and more gregarious species are influenced by biotic and abiotic parameters. A novel finding of our study is that predator richness emerged as an important factor associated with the intraspecific diversification of the mammalian skull along elevational gradients, a previously overlooked parameter. Population genetic structure was mainly driven by environmental heterogeneity along mountain slopes, with no or a week spatial effect, fitting the isolation-by-environment scenario. Our study highlights the strong and multifaceted effects of heterogeneous steep habitats and ecologically based divergent selective forces in small mammal populations.

15.
BMC Evol Biol ; 19(1): 113, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31153378

RESUMO

BACKGROUND: The Taklimakan Desert in China is characterized by unique geological and historical dynamics and endemic flora and fauna, but the influence of historical climate oscillations on the evolutionary history of endemic animals is poorly understood. Lepus yarkandensis is an oases-dependent Near Threatened species that lives in fragmented oasis habitats in the Taklimakan Desert, China. We investigated the geological and climatic impacts on its geographical differentiation, demographic history and influence of Pleistocene glacial-interglacial cycles on the evolutionary history of L. yarkandensis. Further, studied the impact of climatic oscillation based modification on phylogeography, distribution and diversification pattern of Yarkand hare by using Cytb (1140 bp), MGF (592 bp) and SPTBN1 (619 bp) markers. Ecological niche modeling (ENM) revealed the evolutionary history of this species in response to climate change during the Quaternary. Paleodistribution modeling was used to identify putative refugia and estimate their historical distributions. RESULTS: Both historical demographic analyses and climatic niche modeling revealed strong effects of glacial climate changes, suggesting recurrent range contractions and expansions. The EBSP results indicated clear population expansion of L. yarkandensis since the Pleistocene. In the "early Pleistocene", the demographic expansion continued from 0.83 MYA to the last glacial period. The ENM analysis supported a wide distribution of Lepus yarkandensis at high altitudes during the last interglacial (LIG) period. During the last glacial maximum (LGM), the suitable climate was reduced and restricted to the western part of the Taklimakan Desert. CONCLUSIONS: Inland aridification, oasis evolution and river flow played major roles in the population differentiation and demographic history of Yarkand hares. Historically, the large, continuous oases in the Taklimakan Desert contained a viable and unique population of L. yarkandensis. The fragmented desert environment might have caused low gene flow between individuals or groups, thus leading to predominant genetic differentiation. The Pleistocene climatic cycles triggered the diversification and expansion of this species during cold and warm periods, respectively, leading to multiple colonization events within the Taklimakan Desert. These events might be due to the expansion of the Taklimakan Desert during the Middle Pleistocene. Yarkand hare previously occupied vast areas at low and intermediate altitudes in Xinjiang, Gansu, Shanxi, Henan and Shaanxi Provinces in China. The past aridification, climate change-induced oasis modifications, changes in river volumes and flow directions, and human activities all affected the population demography and phylogeography of the Yarkand hare.


Assuntos
Evolução Biológica , Ecossistema , Lebres/classificação , Filogeografia , Animais , Teorema de Bayes , China , DNA Mitocondrial/genética , Variação Genética , Haplótipos/genética , Lebres/genética , Modelos Teóricos , Filogenia , Especificidade da Espécie , Fatores de Tempo
16.
BMC Evol Biol ; 18(1): 50, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636000

RESUMO

BACKGROUND: South China encompasses complex and diverse landforms, giving rise to high biological diversity and endemism from the Hengduan Mountains to Taiwan Island. Many species are widely distributed across South China with similar disjunct distribution patterns. To explore the causes of these disjunct distribution patterns and their genetic consequences, we investigated the endemic species Père David's Chinese Vole (Eothenomys melanogaster) by integrating geological and ecological factors. We analysed the genetic structure and divergence time of E. melanogaster based on fast-evolving mitochondrial and nuclear markers using Bayesian trees and coalescent species tree approaches. Historical scenarios of distribution range and demography were reconstructed based on spatial interpolations of genetic diversity and distance, extended Bayesian skyline plots, phylogeographic diffusion analysis, and ecological niche modelling (ENM) during different periods. We also assessed the relationships between geographical distance/ecological vicariance and genetic distance (isolation by distance, IBD; isolation by environment, IBE). RESULTS: The genetic analysis revealed three deeply divergent clades-Southeast, Southwest and Central clades, centred on the Wuyi Mountains, the Yunnan-Guizhou Plateau (YGP) and the mountains around the Sichuan Basin, respectively-that have mostly developed since the Pleistocene. IBD played an important role in early divergence, and geological events (sedimentation of plains and linking of palaeo-rivers) and IBE further reinforced genetic differentiation. ENM shows the importance of suitable habitats and elevations. CONCLUSIONS: Our results suggest that the primary cause of the disjunct distribution in E. melanogaster is the high dependence on middle-high-altitude habitat in the current period. Mountains in the occurence range have served as "sky islands" for E. melanogaster and hindered gene flow. Pleistocene climatic cycles facilitated genetic admixture in cold periods and genetic diversification in warm periods for inland clades. During cold periods, these cycles led to multiple colonization events between the mainland and Taiwan and erased genetic differentiation.


Assuntos
Arvicolinae/fisiologia , Biodiversidade , Animais , Arvicolinae/genética , Teorema de Bayes , Núcleo Celular/genética , China , DNA Mitocondrial/genética , Demografia , Variação Genética , Geografia , Ilhas , Filogenia , Filogeografia , Especificidade da Espécie , Taiwan , Fatores de Tempo
17.
Sci Rep ; 7: 46127, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393882

RESUMO

The underlying mechanisms that allow the Hengduan Mountains (HDM), the terrestrial biodiversity centre of China, to harbour high levels of species diversity remain poorly understood. Here, we sought to explore the biogeographic history of the endemic rat, Niviventer andersoni species complex (NASC), and to understand the long-term persistence of high species diversity in this region. In contrast to previous studies that have proposed regional refuges in eastern or southern of the HDM and emphasized the influence of climatic oscillations on local vertebrates, we found that HDM as a whole acted as refuge for the NASC and that the historical range shifts of NASC mainly occurred in the marginal regions. Demographic analyses revealed slight recent population decline in Yunnan and south-eastern Tibet, whereas of the populations in Sichuan and of the entire NASC were stable. This pattern differs greatly from classic paradigms of temperate or alpine and holarctic species. Interestingly, the mean elevation, area and climate of potential habitats of clade a (N. excelsior), an alpine inhabitant, showed larger variations than did those of clade b (N. andersoni), a middle-high altitude inhabitant. These species represent the evolutionary history of montane small mammals in regions that were less affected by the Quaternary climatic changes.


Assuntos
Biodiversidade , Animais , Teorema de Bayes , China , DNA Mitocondrial/genética , Demografia , Fósseis , Variação Genética , Geografia , Filogenia , Ratos , Especificidade da Espécie , Fatores de Tempo
18.
BMC Ecol ; 17(1): 17, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28427386

RESUMO

BACKGROUND: Understanding whether species' elevational range is shifting in response to directional changes in climate and whether there is a predictable pattern in that response is one of the major challenges in ecology. However, so far very little is known about the distributional responses of subtropical species to climate change, especially for small mammals. In this study, we examined the elevational range shifts at three range points (upper and lower range limits and abundance-weighted range centre) of rodents over a 30-year period (1986 to 2014-2015), in a subtropical forest of Southwest China. We also examined the influences of four ecological traits (body mass, habitat breadth, diet and daily activity pattern) on the upslope shifts in species' abundance-weighted range centres. RESULTS: Despite the warming trend between 1986 and 2015, the 11 rodent species in analysis displayed heterogeneous dynamics at each of the three range points. Species which have larger body sizes and narrower habitat breadths, show both diurnal and nocturnal activities and more specialized dietary requirements, are more likely to exhibit upslope shifts in abundance-weighted range centres. CONCLUSIONS: Species' distributional responses can be heterogeneous even though there are directional changes in climate. Our study indicates that climate-induced alleviation of competition and lag in response may potentially drive species' range shift, which may not conform to the expectation from climate change. Difference in traits can lead to different range dynamics. Our study also illustrates the merit of multi-faceted assessment in studying elevational range shifts.


Assuntos
Ecossistema , Roedores/fisiologia , Altitude , Distribuição Animal , Animais , Mudança Climática , Feminino , Masculino , Dinâmica Populacional , Roedores/classificação
19.
Ecol Evol ; 7(24): 10941-10951, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29299271

RESUMO

The recently described trait-based approach is becoming widely popular for a mechanistic understanding of species coexistence. However, the greatest challenge in functional analyses is decomposing the contributions of different ecological and evolutionary processes (e.g., niche-based process, neutral process, and evolutionary process) in determining trait structure. Taking rodents (Rodentia) in the Hengduan Mountains as our study model, we aim to (1) quantify the vertical patterns of functional structure for head-body length (HL), tail/body ratio (TR), animal component in diet (ACD), and all traits; (2) disentangle the relative importance of different assembly processes (environment, space, and phylogeny) in structuring trait dispersion; and (3) assess the feasibility of Bergmann's rule and Allen's rule along elevational gradient. Our results have suggested that the vertical functional structure pattern varied across these three traits, indicating distinct functional roles in the community assembly process. These nonrandom vertical patterns of HL, TR, and terminal ACD have demonstrated these traits were dominated by different ecological process along environmental gradient. In variance partitioning, high proportion of the spatial variations in trait dispersion was explained by environmental and spatial models, which have provided supporting strong evidence for niche-based and neutral processes in leading species coexistence. Although the three traits all exhibited apparent phylogenetic signals, phylogenetic relationship within community failed to predict the spatial variations of functional dispersion, confirming the enormous inference of phylogenetic signals in predicting trait structure. By assessing the vertical patterns of HL and TR at order and family levels, we argued that functional adaptation along an environmental gradient is a surrogate of series of complex processes (e.g., environmental filtering, interspecific interaction, and neutral dispersal) acting on multiple functional axes, which results in inconsistence with the empirical rules along elevational gradient.

20.
Zhonghua Er Bi Yan Hou Ke Za Zhi ; 38(3): 195-7, 2003 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-14515778

RESUMO

OBJECTIVE: To investigate the feasibility of vestibulotomy above the displaced facial nerve. METHODS: From January 2000 to January 2002, eight patients with severe congenital conductive hearing loss underwent the vestibulotomy above displaced facial nerve and reconstruction of the ossicular chain with a total ossicular replacement prosthesis, which all for the congenital middle ear deformity and the facial nerve overhang and concealed the oval window niche or lied inferior to the oval window. In four of eight cases, the facial nerve was transposed in order to access the oval window niche. RESULTS: Hearing of this patients improved 15 dB in 2 ears, 16-25 dB in 3 ears and 26 dB or more in 3 ears. In no case was there a postoperative facial paresis. With 4 months to 28 months follow-up, the postoperative hearing gain was stable. CONCLUSIONS: Vestibulotomy above displacement of the facial nerve allows a final chance of achieving serviceable hearing through surgery. The lack of facial nerve injury and the potential for hearing restoration make this procedure feasible in otherwise marginal or poor surgical candidates.


Assuntos
Nervo Facial/anormalidades , Perda Auditiva Condutiva/cirurgia , Adolescente , Adulto , Criança , Nervo Facial/cirurgia , Feminino , Fenestração do Labirinto , Seguimentos , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...