Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(3): e91075, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24622278

RESUMO

OBJECTIVE: Resting-state functional MRI (rsfMRI) has been increasingly used for understanding brain functional architecture. To date, most rsfMRI studies have exploited blood oxygenation level-dependent (BOLD) contrast using gradient-echo (GE) echo planar imaging (EPI), which can suffer from image distortion and signal dropout due to magnetic susceptibility and inherent long echo time. In this study, the feasibility of passband balanced steady-state free precession (bSSFP) imaging for distortion-free and high-resolution rsfMRI was investigated. METHODS: rsfMRI was performed in humans at 3 T and in rats at 7 T using bSSFP with short repetition time (TR = 4/2.5 ms respectively) in comparison with conventional GE-EPI. Resting-state networks (RSNs) were detected using independent component analysis. RESULTS AND SIGNIFICANCE: RSNs derived from bSSFP images were shown to be spatially and spectrally comparable to those derived from GE-EPI images with considerable intra- and inter-subject reproducibility. High-resolution bSSFP images corresponded well to the anatomical images, with RSNs exquisitely co-localized to the gray matter. Furthermore, RSNs at areas of severe susceptibility such as human anterior prefrontal cortex and rat piriform cortex were proved accessible. These findings demonstrated for the first time that passband bSSFP approach can be a promising alternative to GE-EPI for rsfMRI. It offers distortion-free and high-resolution RSNs and is potentially suited for high field studies.


Assuntos
Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Descanso/fisiologia , Animais , Encéfalo/citologia , Estudos de Viabilidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Adulto Jovem
2.
Neuroimage ; 91: 220-7, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24486979

RESUMO

Rapid detection of deviant sounds is a crucial property of the auditory system because it increases the saliency of biologically important, unexpected sounds. The oddball paradigm in which a deviant sound is randomly interspersed among a train of standard sounds has been traditionally used to study this property in mammals. Currently, most human studies have only revealed the involvement of cortical regions in this property. Recently, several animal electrophysiological studies have reported that neurons in the inferior colliculus (IC) exhibit reduced responses to a standard sound but restore their responses at the occurrence of a deviant sound (i.e., stimulus-specific adaptation or SSA), suggesting that the IC may also be involved in deviance detection. However, by adopting an invasive method, these animal studies examined only a limited number of neurons. Although SSA appears to be more prominent in the external cortical nuclei of the IC for frequency deviant, a thorough investigation of this property throughout the IC using other deviants and efficient imaging techniques may provide more comprehensive information on this important phenomenon. In this study, blood-oxygen-level-dependent (BOLD) fMRI with a large field of view was applied to investigate the role of the IC in deviance detection. Two sound tokens that had identical frequency spectrum but temporally inverted profiles were used as the deviant and standard. A control experiment showed that these two sounds evoked the same responses in the IC when they were separately presented. Two oddball experiments showed that the deviant induced higher responses than the standard (by 0.41±0.09% and 0.41±0.10%, respectively). The most activated voxels were in the medial side of the IC in both oddball experiments. The results clearly demonstrated that the IC is involved in deviance detection. BOLD fMRI detection of increased activities in the medial side of the IC to the deviant revealed the highly adaptive nature of a substantial population of neurons in this region, probably those that belong to the rostral or dorsal cortex of the IC. These findings highlighted the complexity of auditory information processing in the IC and may guide future studies of the functional organizations of this subcortical structure.


Assuntos
Percepção Auditiva/fisiologia , Colículos Inferiores/fisiologia , Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue , Estimulação Acústica , Animais , Fenômenos Eletrofisiológicos , Processamento de Imagem Assistida por Computador , Masculino , Ratos , Ratos Sprague-Dawley
3.
Neuroimage ; 90: 235-45, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24394694

RESUMO

The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn(2+) administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn(2+) injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn(2+) transfer but not intra- or inter-hemispheric monosynaptic Mn(2+) transport after Mn(2+) injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies.


Assuntos
Mapeamento Encefálico/métodos , Manganês , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia , Animais , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Ratos , Ratos Sprague-Dawley , Descanso
4.
Neuroimage ; 84: 1-10, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23988270

RESUMO

Despite the immense ongoing efforts to map brain functional connections and organizations with resting-state functional MRI (rsfMRI), the mechanisms governing the temporally coherent rsfMRI signals remain unclear. In particular, there is a lack of direct evidence regarding the morphological foundation and plasticity of these rsfMRI derived connections. In this study, we investigated the role of axonal projections in rsfMRI connectivity and its plasticity. Well-controlled rodent models of complete and posterior corpus callosotomy were longitudinally examined with rsfMRI at 7T in conjunction with intracortical EEG recording and functional MRI tracing of interhemispheric neuronal pathways by manganese (Mn(2+)). At post-callosotomy day 7, significantly decreased interhemispheric rsfMRI connectivity was observed in both groups in the specific cortical areas whose callosal connections were severed. At day 28, the disrupted connectivity was restored in the partial callosotomy group but not in the complete callosotomy group, likely due to the compensation that occurred through the remaining interhemispheric axonal pathways. This restoration - along with the increased intrahemispheric functional connectivity observed in both groups at day 28 - highlights the remarkable adaptation and plasticity in brain rsfMRI connections. These rsfMRI findings were paralleled by the intracortical EEG recording and Mn(2+) tracing results. Taken together, our experimental results directly demonstrate that axonal connections are the indispensable foundation for rsfMRI connectivity and that such functional connectivity can be plastic and dynamically reorganized atop the morphological connections.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Corpo Caloso/anatomia & histologia , Corpo Caloso/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Descanso/fisiologia
5.
PLoS One ; 8(8): e70706, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940631

RESUMO

OBJECTIVE: Interaural level difference (ILD) is the difference in sound pressure level (SPL) between the two ears and is one of the key physical cues used by the auditory system in sound localization. Our current understanding of ILD encoding has come primarily from invasive studies of individual structures, which have implicated subcortical structures such as the cochlear nucleus (CN), superior olivary complex (SOC), lateral lemniscus (LL), and inferior colliculus (IC). Noninvasive brain imaging enables studying ILD processing in multiple structures simultaneously. METHODS: In this study, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is used for the first time to measure changes in the hemodynamic responses in the adult Sprague-Dawley rat subcortex during binaural stimulation with different ILDs. RESULTS AND SIGNIFICANCE: Consistent responses are observed in the CN, SOC, LL, and IC in both hemispheres. Voxel-by-voxel analysis of the change of the response amplitude with ILD indicates statistically significant ILD dependence in dorsal LL, IC, and a region containing parts of the SOC and LL. For all three regions, the larger amplitude response is located in the hemisphere contralateral from the higher SPL stimulus. These findings are supported by region of interest analysis. fMRI shows that ILD dependence occurs in both hemispheres and multiple subcortical levels of the auditory system. This study is the first step towards future studies examining subcortical binaural processing and sound localization in animal models of hearing.


Assuntos
Núcleo Coclear/fisiologia , Colículos Inferiores/fisiologia , Núcleo Olivar/fisiologia , Localização de Som/fisiologia , Estimulação Acústica , Animais , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Ratos , Ratos Sprague-Dawley
6.
Neuroimage ; 65: 119-26, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23041525

RESUMO

Intensity is an important physical property of a sound wave and is customarily reported as sound pressure level (SPL). Invasive techniques such as electrical recordings, which typically examine one brain region at a time, have been used to study neuronal encoding of SPL throughout the central auditory system. Non-invasive functional magnetic resonance imaging (fMRI) with large field of view can simultaneously examine multiple auditory structures. We applied fMRI to measure the hemodynamic responses in the rat brain during sound stimulation at seven SPLs over a 72 dB range. This study used a sparse temporal sampling paradigm to reduce the adverse effects of scanner noise. Hemodynamic responses were measured from the central nucleus of the inferior colliculus (CIC), external cortex of the inferior colliculus (ECIC), lateral lemniscus (LL), medial geniculate body (MGB), and auditory cortex (AC). BOLD signal changes generally increase significantly (p<0.001) with SPL and the dependence is monotonic in CIC, ECIC, and LL. The ECIC has higher BOLD signal change than CIC and LL at high SPLs. The difference between BOLD signal changes at high and low SPLs is less in the MGB and AC. This suggests that the SPL dependences of the LL and IC are different from those in the MGB and AC and the SPL dependence of the CIC is different from that of the ECIC. These observations are likely related to earlier observations that neurons with firing rates that increase monotonically with SPL are dominant in the CIC, ECIC, and LL while non-monotonic neurons are dominant in the MGB and AC. Further, the IC's SPL dependence measured in this study is very similar to that measured in our earlier study using the continuous imaging method. Therefore, sparse temporal sampling may not be a prerequisite in auditory fMRI studies of the IC.


Assuntos
Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Som , Animais , Hemodinâmica/fisiologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley
7.
Neuroimage ; 60(2): 1205-11, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22297205

RESUMO

Rodents share general anatomical, physiological and behavioral features in the central auditory system with humans. In this study, monaural broadband noise and pure tone sounds are presented to normal rats and the resulting hemodynamic responses are measured with blood oxygenation level-dependent (BOLD) fMRI using a standard spin-echo echo planar imaging sequence (without sparse temporal sampling). The cochlear nucleus (CN), superior olivary complex, lateral lemniscus, inferior colliculus (IC), medial geniculate body and primary auditory cortex, all major auditory structures, are activated by broadband stimulation. The CN and IC BOLD signal changes increase monotonically with sound pressure level. Pure tone stimulation with three distinct frequencies (7, 20 and 40 kHz) reveals the tonotopic organization of the IC. The activated regions shift from dorsolateral to ventromedial IC with increasing frequency. These results agree with electrophysiology and immunohistochemistry findings, indicating the feasibility of auditory fMRI in rats. This is the first fMRI study of the rodent ascending auditory pathway.


Assuntos
Vias Auditivas/fisiologia , Colículos Inferiores/fisiologia , Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue , Animais , Vias Auditivas/anatomia & histologia , Mapeamento Encefálico/métodos , Colículos Inferiores/anatomia & histologia , Masculino , Ratos , Ratos Sprague-Dawley
8.
Neuroimage ; 59(3): 2274-83, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21985904

RESUMO

The rodents are an excellent model for understanding the development and plasticity of the visual system. In this study, we explored the feasibility of Mn-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) at 7 T for in vivo and longitudinal assessments of the retinal and callosal pathways in normal neonatal rodent brains and after early postnatal visual impairments. Along the retinal pathways, unilateral intravitreal Mn2+ injection resulted in Mn2+ uptake and transport in normal neonatal visual brains at postnatal days (P) 1, 5 and 10 with faster Mn2+ clearance than the adult brains at P60. The reorganization of retinocollicular projections was also detected by significant Mn2+ enhancement by 2%-10% in the ipsilateral superior colliculus (SC) of normal neonatal rats, normal adult mice and adult rats after neonatal monocular enucleation (ME) but not in normal adult rats or adult rats after monocular deprivation (MD). DTI showed a significantly higher fractional anisotropy (FA) by 21% in the optic nerve projected from the remaining eye of ME rats compared to normal rats at 6 weeks old, likely as a result of the retention of axons from the ipsilaterally uncrossed retinal ganglion cells, whereas the anterior and posterior retinal pathways projected from the enucleated or deprived eyes possessed lower FA after neonatal binocular enucleation (BE), ME and MD by 22%-56%, 18%-46% and 11%-15% respectively compared to normal rats, indicative of neurodegeneration or immaturity of white matter tracts. Along the visual callosal pathways, intracortical Mn2+ injection to the visual cortex of BE rats enhanced a larger projection volume by about 74% in the V1/V2 transition zone of the contralateral hemisphere compared to normal rats, without apparent DTI parametric changes in the splenium of corpus callosum. This suggested an adaptive change in interhemispheric connections and spatial specificity in the visual cortex upon early blindness. The results of this study may help determine the mechanisms of axonal uptake and transport, microstructural reorganization and functional activities in the living visual brains during development, diseases, plasticity and early interventions in a global and longitudinal setting.


Assuntos
Corpo Caloso/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Manganês , Plasticidade Neuronal/fisiologia , Retina/anatomia & histologia , Vias Visuais/anatomia & histologia , Animais , Animais Recém-Nascidos , Anisotropia , Cegueira/patologia , Encéfalo/anatomia & histologia , Encéfalo/patologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/patologia , Interpretação Estatística de Dados , Enucleação Ocular , Feminino , Processamento de Imagem Assistida por Computador/métodos , Estudos Longitudinais , Terminações Nervosas/fisiologia , Terminações Nervosas/ultraestrutura , Gravidez , Ratos , Ratos Sprague-Dawley , Retina/crescimento & desenvolvimento , Retina/patologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/patologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-22255951

RESUMO

This study explored the feasibility of high-resolution Mn-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) for in vivo assessments of the development and reorganization of retinal and visual callosal pathways in normal neonatal rodent brains and after early postnatal visual impairments. Using MEMRI, intravitreal Mn(2+) injection into one eye resulted in maximal T1-weighted hyperintensity in neonatal contralateral superior colliculus (SC) 8 hours after administration, whereas in adult contralateral SC signal increase continued at 1 day post-injection. Notably, mild but significant Mn(2+) enhancement was observed in the ipsilateral SC in normal neonatal rats, and in adult rats after neonatal monocular enucleation (ME) but not in normal adult rats. Upon intracortical Mn(2+) injection to the visual cortex, neonatal binocularly-enucleated (BE) rats showed an enhancement of a larger projection area, via the splenium of corpus callosum to the V1/V2 transition zone of the contralateral hemisphere in comparison to normal rats. For DTI, the retinal pathways projected from the enucleated eyes possessed lower fractional anisotropy (FA) 6 weeks after BE and ME. Interestingly, in the optic nerve projected from the remaining eye in ME rats a significantly higher FA was observed compared to normal rats. The results of this study are potentially important for understanding the axonal transport, microstructural reorganization and functional activities in the living visual brain during early postnatal development and plasticity in a global and longitudinal setting.


Assuntos
Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Manganês/farmacologia , Visão Ocular/fisiologia , Animais , Animais Recém-Nascidos , Anisotropia , Axônios/patologia , Encéfalo/patologia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Ratos , Ratos Sprague-Dawley , Retina/patologia , Retina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...