Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 59(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36984553

RESUMO

Background and Objective: Our previous study demonstrated that consistent treatment of oral cilostazol was effective in reducing levels of painful peripheral neuropathy in streptozotocin-induced type I diabetic rats. As diabetic neuropathy is characterized by hyperglycemia-induced nerve damage in the periphery, this study aims to examine the neuropathology as well as the effects of cilostazol treatments on the integrity of peripheral small nerve fibers in type I diabetic rats. Materials and Methods: A total of ninety adult male Sprague-Dawley rats were divided into the following groups: (1) naïve (control) group; (2) diabetic rats (DM) group for 8 weeks; DM rats receiving either (3) 10 mg/kg oral cilostazol (Cilo10), (4) 30 mg/kg oral cilostazol (Cilo30), or (5) 100 mg/kg oral cilostazol (Cilo100) for 6 weeks. Pain tolerance thresholds of hind paws toward thermal and mechanical stimuli were assessed. Expressions of PGP9.5, P2X3, CGRP, and TRPV-1 targeting afferent nerve fibers in hind paw skin and glial cells in the spinal dorsal horn were examined via immunohistochemistry and immunofluorescence. Results: Oral cilostazol ameliorated the symptoms of mechanical allodynia but not thermal analgesia in DM rats. Significant reductions in PGP9.5-, P2X3-, CGRP, and TRPV-1-labeled penetrating nerve fibers in the epidermal layer indicated denervation of sensory nerves in the hind paw epidermis of DM rats. Denervation significantly improved in groups that received Cilo30 and Cilo100 in a dose-dependent manner. Cilostazol administration also suppressed microglial hyperactivation and increased astrocyte expressions in spinal dorsal horns. Conclusions: Oral cilostazol ameliorated hyperglycemia-induced peripheral small nerve fiber damage in the periphery of diabetic rats and effectively mitigated diabetic neuropathic pain via a central sensitization mechanism. Our findings present cilostazol not only as an effective option for managing symptoms of neuropathy but also for deterring the development of diabetic neuropathy in the early phase of type I diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Neuropatias Diabéticas , Hiperglicemia , Ratos , Masculino , Animais , Cilostazol/uso terapêutico , Cilostazol/farmacologia , Neuropatias Diabéticas/tratamento farmacológico , Ratos Sprague-Dawley , Estreptozocina/efeitos adversos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/induzido quimicamente , Peptídeo Relacionado com Gene de Calcitonina/efeitos adversos , Peptídeo Relacionado com Gene de Calcitonina/análise , Nervo Isquiático/patologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Denervação
2.
Front Pharmacol ; 13: 859982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694244

RESUMO

Background: Peripheral nerve block (PNB) under echo guidance may not prevent intrafascicular anesthetic injection-induced nerve injury. This study investigated whether unintended needle piercing alone, or the intrafascicular nerve injectant could induce neuropathy. Methods: 120 adult male Sprague-Dawley rats were divided into four groups: 1) group S, only the left sciatic nerve was exposed; 2) group InF-P, the left sciatic nerve was exposed and pierced with a 30 G needle; 3) group InF-S, left sciatic nerve was exposed and injected with saline (0.9% NaCl 30 µL); 4) group InF-R, left sciatic nerve was exposed and injected with 0.5% (5 mg/mL, 30 µL) ropivacaine. Behaviors of thermal and mechanical stimuli responses from hindpaws, sciatic nerve vascular permeability and tight junction protein expression, and macrophage infiltration were assessed. Pro-inflammatory cytokine expression and TIMP-1 and MMP-9 activation at the injection site and the swollen, and distal sites of the sciatic nerve were measured by cytokine array, western blotting, and immunofluorescence of POh14 and POD3. Results: Intrafascicular saline and ropivacaine into the sciatic nerve, but not needle piercing alone, significantly induced mechanical allodynia that lasted for seven days. In addition, the prior groups increased vascular permeability and macrophage infiltration, especially in the swollen site of the sciatic nerve. Thermal hypersensitivity was induced and lasted for only 3 days after intrafascicular saline injection. Obvious upregulation of TIMP-1 and MMP-9 on POh6 and POh14 occurred regardless of intrafascicular injection or needle piercing. Compared to the needle piercing group, the ratio of MMP-9/TIMP-1 was significantly higher in the intrafascicular injectant groups at the injected and swollen sites of the sciatic nerve. Although no gross changes in the expressions of tight junction proteins (TJPs) claudin-5 and ZO-1, the TJPs turned to apparent fragmentation and fenestration-like degenerative change in swollen endothelial cells and thickened microvessels. Conclusion: Intrafascicular nerve injection is a distinct mechanism that induces neuropathy. It is likely that the InF nerve injection-induced neuropathy was largely due to dramatic, but transient, increases in enzymatic activities of MMP-9 and activating TIMP-1 in the operated nerves. The changes in enzymatic activities then contributed to certain levels of extracellular matrix degradation, which leads to increases in endoneurial vascular permeability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...