Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 161: 213899, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38772133

RESUMO

Large bone defects, particularly those exceeding the critical size, present a clinical challenge due to the limited regenerative capacity of bone tissue. Traditional treatments like autografts and allografts are constrained by donor availability, immune rejection, and mechanical performance. This study aimed to develop an effective solution by designing gradient gyroid scaffolds with titania (TiO2) surface modification for the repair of large segmental bone defects. The scaffolds were engineered to balance mechanical strength with the necessary internal space to promote new bone formation and nutrient exchange. A gradient design of the scaffold was optimized through Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) simulations to enhance fluid flow and cell adhesion. In vivo studies in rabbits demonstrated that the G@TiO2 scaffold, featuring a gradient structure and TiO2 surface modification, exhibited superior healing capabilities compared to the homogeneous structure and TiO2 surface modification (H@TiO2) and gradient structure (G) scaffolds. At 12 weeks post-operation, in a bone defect representing nearly 30 % of the total length of the radius, the implantation of the G@TiO2 scaffold achieved a 27 % bone volume to tissue volume (BV/TV) ratio, demonstrating excellent osseointegration. The TiO2 surface modification provided photothermal antibacterial effects, enhancing the scaffold's biocompatibility and potential for infection prevention. These findings suggest that the gradient gyroid scaffold with TiO2 surface modification is a promising candidate for treating large segmental bone defects, offering a combination of mechanical strength, bioactivity, and infection resistance.

2.
Biomater Adv ; 151: 213455, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37148594

RESUMO

Polyetheretherketone (PEEK) and its derivative polyetherketoneketone (PEKK) have been used as implant materials for spinal fusing and enjoyed their success for many years because of their mechanical properties similar to bone and their chemical inertness. The osseointegration of PEEKs is datable. Our strategy was to use custom-designed and 3D printed bone analogs with an optimized structure design and a modified PEKK surface to augment bone regeneration for mandibular reconstruction. Those bone analogs had internal porosities and a bioactive titanium oxide surface coating to promote osseointegration between native bone and PEKK analogs. Our workflow was 3D modeling, bone analog designing, structural optimization, mechanical analysis via finite element modeling, 3D printing of bone analogs and subsequently, an in vivo rabbit model study on mandibular reconstruction and histology evaluation. Our results showed the finite element analysis validated that the porous PEKK analogs provided a mechanical-sound structure for functional loadings. The bone analogs offered a perfect replacement for segmented bones in the terms of shape, form and volume for surgical reconstruction. The in vivo results showed that bioactive titanium oxide coating enhanced new bone in-growth into the porous PEKK analogs. We have validated our new approach in surgical mandibular reconstruction and we believe our strategy has a significant potential to improve mechanical and biological outcomes for patients who require mandibular reconstruction procedures.


Assuntos
Reconstrução Mandibular , Animais , Coelhos , Porosidade , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Cetonas/farmacologia , Cetonas/química , Impressão Tridimensional , Mandíbula/cirurgia
3.
Int J Numer Method Biomed Eng ; 39(7): e3716, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37096732

RESUMO

Long-term excessive forces loading from muscles of mastication during mandibular motions may result in disorders of temporomandibular joint (TMJ), myofascial pain, and restriction of jaw opening and closing. Current analysis of mandibular movements is generally conducted with a single opening, protrusive and lateral movements rather than composite motions that the three can be combined arbitrarily. The objective of this study was to construct theoretical equations reflecting the correlation between composite motions and muscle forces, and consequently to analyze the mandibular composite motions and the tensions of muscles of mastication in multiple dimensions. The muscle performances such as strength, power, and endurance of mandibular motions were analyzed and the effective motion range of each muscle was derived. The mandibular composite motion model was simplified by calculating muscle forces. An orthogonal rotation matrix based on muscle forces was established. A 3D printed mandible was used for in vitro simulation of mandibular motions on a robot and measurements of force were conducted. The theoretical model and forces were verified through a trajectory tracing experiment of mandibular motions driven by a 6-axis robot with force/torque sensors. Through the analysis of the mandibular composite motion model, the motion form was obtained and transferred to guide the motions of the robot. The error between the experimental data obtained by the 6-axis force/torque sensors and the theoretical data was within 0.6 N. Our system provides excellent visualization for analyzing the changes of muscle forces and locations during various mandibular movements. It is useful for clinicians to diagnose and formulate treatment for patients who suffer from (temporomandibular joint disorders) TMDs and restrict jaw movements. The system can potentially offer the comparison before and after treatment of TMDs or jaw surgery.


Assuntos
Mandíbula , Transtornos da Articulação Temporomandibular , Humanos , Articulação Temporomandibular , Movimento , Mastigação/fisiologia , Amplitude de Movimento Articular/fisiologia
4.
BMC Oral Health ; 22(1): 431, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180871

RESUMO

BACKGROUND: The combination of a prosthetic index with Morse taper connection was developed, with the purpose of making prosthetic procedures more precise. However, the presence of the index may compromise the mechanical performance of the abutment. The aim of this study is to evaluate the effect of prosthetic index on stress distribution in implant-abutment-screw system and peri-implant bone by using the 3D finite element methodology. METHODS: Two commercial dental implant systems with different implant-abutment connections were used: the Morse taper connection with platform switching (MT-PS) implant system and the internal hex connection with platform matching (IH-PM) implant system. Meanwhile, there are two different designs of Morse taper connection abutment, namely, abutments with or without index. Consequently, three different models were developed and evaluated: (1) MT-PS indexed, (2) MT-PS non-indexed, and (3) IH-PM. These models were inserted into a bone block. Vertical and oblique forces of 100 N were applied to each abutment to simulate occlusal loadings. RESULTS: For the MT-PS implant system, the maximum stress was always concentrated in the abutment neck under both vertical and oblique loading. Moreover, the maximum von Mises stress in the neck of the MT-PS abutment with index even exceed the yield strength of titanium alloy under the oblique loading. For the IH-PM implant system, however, the maximum stress was always located at the implant. Additionally, the MT-PS implant system has a significantly higher stress level in the abutment neck and a lower stress level around the peri-implant bone compared to the IH-PM implant system. The combined average maximum stress from vertical and oblique loads is 2.04 times higher in the MT-PS indexed model, and 1.82 times for the MT-PS non-indexed model than that of the IH-PM model. CONCLUSIONS: MT-PS with index will cause higher stress concentration on the abutment neck than that of without index, which is more prone to mechanical complications. Nevertheless, MT-PS decreases stress within cancellous bone and may contribute to limiting crestal bone resorption.


Assuntos
Implantes Dentários , Ligas , Fenômenos Biomecânicos , Análise do Estresse Dentário/métodos , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Titânio
5.
Technol Health Care ; 30(4): 1017-1030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275582

RESUMO

BACKGROUND: Customized prosthetic joint replacements have crucial applications in severe temporomandibular joint problems, and the combined use of porous titanium scaffold is a potential method to rehabilitate the patients. OBJECTIVE: The objective of the study was to develop a design method to obtain a titanium alloy porous condylar prosthesis with good function and esthetic outcomes for mandibular reconstruction. METHODS: A 3D virtual mandibular model was created from CBCT data. A condylar defect model was subsequently created by virtual condylectomy on the initial mandibular model. The segmented condylar defect model was reconstructed by either solid or porous condyle with a fixation plate. The porous condyle was created by a density-driven modeling scheme with an inhomogeneous tetrahedral lattice structure. The porous condyle, supporting fixation plate, and screw locations were topologically optimized. Biomechanical behaviors of porous and solid condylar prostheses made of Ti-6Al-4V alloy were compared. Finite element analysis (FEA) was used to evaluate maximum stress distribution on both prostheses and the remaining mandibular ramus. RESULTS: The FEA results showed levels of maximum stresses were 6.6%, 36.4% and 47.8% less for the porous model compared to the solid model for LCI, LRM, and LBM loading conditions. Compared to the solid prosthesis, the porous prosthesis had a weight reduction of 57.7% and the volume of porosity of the porous condyle was 65% after the topological optimization process. CONCLUSIONS: A custom-made porous condylar prosthesis with fixation plate was designed in this study. The 3D printed Ti-6Al-4V porous condylar prosthesis had reduced weight and effective modulus of elasticity close to that of cortical bone. The.


Assuntos
Prótese Articular , Titânio , Análise de Elementos Finitos , Humanos , Mandíbula , Porosidade , Impressão Tridimensional , Desenho de Prótese , Articulação Temporomandibular/cirurgia , Titânio/química
6.
Int J Numer Method Biomed Eng ; 38(2): e3549, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34723440

RESUMO

This study aims to characterize biomechanical behavior of various designs of posterior mandibular marginal resection under functional loadings using finite element method. The ultimate goal of this work is to provide clinically relevant information to prevent postoperative fracture and to stipulate prophylactic internal fixation for planning of marginal mandibulectomy. A 3D mandibular master model was reconstructed from cone beam computed tomography images. Different marginal resection models were created based on three design parameters, namely, defect curvilinear radius, anterior-posterior defect width and residual height of the mandibular body. Functional loadings from incisors (60 N) and contralateral first molar area (200 N) were applied to designed models and stress patterns were compared of five groups with curvilinear radius from 0 (conventional rectangular shape), 2.5, 3.5, 5, and 6 mm. Models with 25, 35 and 45 mm defect width mimic defects varied from canine to 3rd molar were tested. Residual height range from 10 to 4 mm was assessed. The results show high stresses predominated in the occlusal area and the posterior inferior border near the resection corner. The average maximum stress decreased by 29.8% (r = 2.5 mm), 51.9% (r = 3.5 mm), 54.4% (r = 5 mm), and 59.3% (r = 6 mm) compared to the baseline of r = 0 mm. The results from the combined defect width/residual height models demonstrate the increase of defect width and the decrease in residual height resulted in the increase of maximum stress. Our data also confirm that the factor of residual height supersedes defect width in terms of prevention of postoperative fracture when considering resection design.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Mandíbula , Fenômenos Biomecânicos , Análise de Elementos Finitos , Fixação Interna de Fraturas/métodos , Incisivo , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Estresse Mecânico
7.
Int J Med Robot ; 18(1): e2346, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34695880

RESUMO

BACKGROUND: The purpose of this study is to develop a methodology to better control a human-robot collaboration for robotic dental implant placement. We have designed a human-robot collaborative implant system (HRCDIS) which is based on a zero-force hand-guiding concept and a operational task management workflow that can achieve highly accurate and stable osteotomy drilling based on a surgeon's decision and robotic arm movements during implant surgery. METHOD: The HRCDIS brings forth the robot arm positions, exact drilling location, direction and performs automatic drilling. The HRCDIS can also avoid complex programing in the robot. The purpose of the study is to evaluate the accuracy of drilling resulting from our developed operational task management method (OTMM). The OTMM can enable the robot to switch, pause, and resume drilling tasks. The force required for hand-guiding in a zero-force control mode of the robot was detected by a 6D force sensor. We compared our force data to those provided by the manufacturer's manual. The study was conducted on a phantom head with a 3D-printed jaw bone to verify the validity of our HRCDIS. We appraised the discrepancies between free-hand drillings and the HRCDIS controlled drillings at apical centre and head centre of the implant and implant angulation to the baseline data from a virtual surgical planning model. RESULTS: The average required force used by hand-guiding to operate the robot with HRCDIS was near 7 Newton which is much less than the manufacturer's specification (30 Newton). The results from our study showed that the average error at implant head was 1.04 ± 0.37 mm, 1.56 ± 0.52 mm at the implant apex, and deviation of implant angle was 3.74 ± 0.67°. CONCLUSIONS: The results from this study validate the merit of the human-robot collaboration control by the HRCDIS. Based on the improved navigation system using HRCDIS, a robotic implant placement can provide seamless drilling with ease, efficiency and accuracy.


Assuntos
Implantes Dentários , Procedimentos Cirúrgicos Robóticos , Robótica , Cirurgia Assistida por Computador , Humanos , Imagens de Fantasmas
8.
Mater Sci Eng C Mater Biol Appl ; 124: 112056, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947550

RESUMO

A porous scaffold/implant is considered a potential method to repair bone defects, but its mechanical stability and biomechanics during the repair process are not yet clear. A mandibular titanium implant was proposed and designed with layered porous structures similar to that of the bone tissue, both in structure and mechanical properties. Topology was used to optimize the design of the porous implant and fixed structure. The finite element analysis was combined with bone "Mechanostat" theory to evaluate the stress and osteogenic property of the layered porous implant with 3 different fixation layouts (Model I with 4 screws, Model II with 5 screws and Model III with 6 screws) for mandibular reconstruction. The results showed that Model III could effectively reduce the stress shielding effect, stress within the optimized implant, defective mandible, and screws were respectively dropped 48.18%, 44.23%, and 57.27% compared to Model I, and the porous implant had a significant stress transmission effect and maintained the same stress distribution as the intact mandible after the mandibular defect was repaired. The porous implant also showed a significant mechanical stimulation effect on the growth and healing of the bone tissue according to the bone "Mechanostat" theory. The combination of porous structure with the topology technique is a promising option to improve the mechanical stability and osteogenesis of the implant, and could provide a new solution for mandibular reconstruction.


Assuntos
Reconstrução Mandibular , Fenômenos Biomecânicos , Análise de Elementos Finitos , Mandíbula , Porosidade , Estresse Mecânico , Titânio
9.
Biomed Eng Online ; 20(1): 15, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546713

RESUMO

BACKGROUND: The objective of the study was to validate biomechanical characteristics of a 3D-printed, novel-designated fixation plate for treating mandibular angle fracture, and compare it with two commonly used fixation plates by finite element (FE) simulations and experimental testing. METHODS: A 3D virtual mandible was created from a patient's CT images as the master model. A custom-designed plate and two commonly used fixation plates were reconstructed onto the master model for FE simulations. Modeling of angle fracture, simulation of muscles of mastication, and defining of boundary conditions were integrated into the theoretical model. Strain levels during different loading conditions were analyzed using a finite element method (FEM). For mechanical test design, samples of the virtual mandible with angle fracture and the custom-designed fixation plates were printed using selective laser sintering (SLS) and selective laser melting (SLM) printing methods. Experimental data were collected from a testing platform with attached strain gauges to the mandible and the plates at different 10 locations during mechanical tests. Simulation of muscle forces and temporomandibular joint conditions were built into the physical models to improve the accuracy of clinical conditions. The experimental vs the theoretical data collected at the 10 locations were compared, and the correlation coefficient was calculated. RESULTS: The results show that use of the novel-designated fixation plate has significant mechanical advantages compared to the two commonly used fixation plates. The results of measured strains at each location show a very high correlation between the physical model and the virtual mandible of their biomechanical behaviors under simulated occlusal loading conditions when treating angle fracture of the mandible. CONCLUSIONS: Based on the results from our study, we validate the accuracy of our computational model which allows us to use it for future clinical applications under more sophisticated biomechanical simulations and testing.


Assuntos
Placas Ósseas , Análise de Elementos Finitos , Fixação Interna de Fraturas/instrumentação , Fraturas Mandibulares/cirurgia , Fenômenos Biomecânicos , Humanos , Estresse Mecânico
10.
Comput Biol Med ; 129: 104153, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33260102

RESUMO

BACKGROUND: The purpose of this study was to develop and validate a positioning method with hand-guiding and contact position feedback of robot based on a human-robot collaborative dental implant system (HRCDIS) for robotic guided dental implant surgery. METHODS: An HRCDIS was developed based on a light-weight cooperative robot arm, UR5. A three-dimensional (3D) virtual partially edentulous mandibular bone was reconstructed using the cone bone computed tomography images. After designing the preoperative virtual implant planning using the computer software, a fixation guide worn on teeth for linking and fixing positioning marker was fabricated by 3D printing. The fixation guide with the positioning marker and a resin model mimicking the oral tissues were assembled on a head phantom. The planned implant positions were derived by the coordinate information of the positioning marker. The drilling process using the HRCDIS was conducted after mimicking the experimental set-up and planning the drilling trajectory. Deviations between actual and planned implant positions were measured and analyzed. RESULTS: The head phantom experiments results showed that the error value of the central deviation at hex (refers to the center of the platform level of the implant) was 0.79 ± 0.17 mm, central deviation at the apex was 1.26 ± 0.27 mm, horizontal deviation at the hex was 0.61 ± 0.19 mm, horizontal deviation at the apex was 0.91 ± 0.55 mm, vertical deviation at the hex was 0.38 ± 0.17 mm, vertical deviation at the apex was 0.37 ± 0.20 mm, and angular deviation was 3.77 ± 1.57°. CONCLUSIONS: The results from this study preliminarily validate the feasibility of the accurate navigation method of the HRCDIS.


Assuntos
Implantes Dentários , Procedimentos Cirúrgicos Robóticos , Robótica , Cirurgia Assistida por Computador , Algoritmos , Desenho Assistido por Computador , Tomografia Computadorizada de Feixe Cônico , Retroalimentação , Humanos , Imageamento Tridimensional
11.
J Mech Behav Biomed Mater ; 107: 103758, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32279058

RESUMO

PURPOSE: The purpose of this study was to analyze mechanical behaviors of a topologically optimized and 3D-printed mandibular bone block with polyetherketoneketone (PEKK) for surgical mandibular reconstruction. MATERIALS AND METHODS: 3D virtual mandibular models were reconstructed from cone beam computed tomography images. A proposed mandibular resection of the mandibular body (40 mm anterior-posteriorly) was segmented. Internal structure of the resected bone was designed with topological optimization. Dental implants and implant-supported crowns were integrated into the design. A second 3D virtual model was created with the same size and location of the defect but was reconstructed with a fibular graft and implant-supported crowns. The biomechanical behaviors of the two models were compared by finite element method (FEM) under the same boundary constraints and three loading locations, namely, central incisors, lower left and right side first molar areas. RESULTS: The FEM results showed the maximum stresses and displacements of the topology optimized model were much lower than those of the model with fibular bone graft. The highest stress of the optimized mandibular model was located on the lower edge of the posterior border of bone analog, and fixation screws. The maximum displacement occurred at the lower edge of the proximal mandibular stump or the lower edge of the distal mandibular body on the contralateral site. Under the same three loading locations, the maximum stress of the optimized model significantly decreased by 67.9%, 71.9% and 68.6% compared to the fibular graft model. CONCLUSIONS: The 3D printed bone analog with topological optimization is patient-specific and has advantages over the conventional fibular bone graft for surgical mandibular reconstruction. The optimized PEKK bone analog model creates more normal stress-strain trajectories than the fibular graft model and likely provides better functional and cosmetic outcomes.


Assuntos
Implantes Dentários , Reconstrução Mandibular , Impressão Tridimensional , Benzofenonas , Fenômenos Biomecânicos , Análise do Estresse Dentário , Análise de Elementos Finitos , Humanos , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Polímeros , Estresse Mecânico
12.
J Plast Reconstr Aesthet Surg ; 72(2): 281-289, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30482534

RESUMO

BACKGROUND: For large mandibular defects, surgical reconstruction using microvascular fibular grafts has advantages over other alternatives in terms of blood supply and good quality of grafted bone. However, the fibular segment is usually lower in height than that of the original mandible, meaning that the vertical positioning of the fibular graft is variable, with different biomechanical consequences on the reconstructed mandible. OBJECTIVES: To use finite element method (FEM) to evaluate stress distribution and displacement of a reconstructed mandible versus an intact mandible under occlusal loads. METHODS: A three-dimensional intact edentulous mandibular bone (Model I) and a reconstructed mandible bone with fibular graft were created from CBCT images. Calculation models were generated with fibular bone graft extracted from the reconstructed mandible of identical length placed into a mimicked defect area on the right-hand side of the mandible at three different vertical positions: superior (Model II), intermediate (Model III), and inferior (Model IV). Forces were applied at lower left first molar region and lower left central incisor area. Von Mises stresses and mandibular displacement were calculated as outcome measurements during loadings. RESULTS: Maximum stress and strain within the reconstructed mandible were identified at the posterior border of the graft and the contralateral condyle. Maximum displacement occurred near the interface of fibular graft and anterior segment of the mandible. Stress distribution in the graft under functional loads is much higher than that in the residual mandibular segments from Models II to IV. The combined average maximum stress from anterior and posterior loads is 10.66 times higher in the mandible with inferiorly positioned graft (Model IV), 8.72 times for superior graft (Model II), and 3.68 times for intermediate graft (Model III) than that in the control group (Model I). The worst displacement result during functional loadings was in the group with fibular graft located at the inferior border of the mandible. CONCLUSIONS: The position of fibular graft placed in the surgical resection site has significant effects on the mechanical behavior of the reconstructed mandible. The fibular graft aligned with the inferior border of the mandible, the most common site designated location by clinicians, has the worst effects on the stress distribution and displacement to the mandibular under functional loads. The fibular graft placed at the intermediate location has the best biomechanics and provides favorable condition for subsequent prosthetic reconstruction.


Assuntos
Fíbula/transplante , Mandíbula/fisiologia , Mandíbula/cirurgia , Reconstrução Mandibular/métodos , Fenômenos Biomecânicos , Fíbula/irrigação sanguínea , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Mandíbula/irrigação sanguínea , Mandíbula/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...