Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiol Clin North Am ; 60(6): 941-950, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36202480

RESUMO

Lung injury associated with smoking tobacco or other substances results in a variety of clinical presentations and imaging patterns, depending on mechanism of injury and substance inhaled. Patients may present in the acute setting, as in the case of acute eosinophilic pneumonia, e-cigarette or vaping product use-associated lung injury, crack lung, or heroin inhalation. They may present with subacute shortness of breath and demonstrate findings of pulmonary Langerhans cell histiocytosis, respiratory bronchiolitis, or desquamative interstitial pneumonia. Alternatively, they may present with chronic dyspnea and demonstrate findings of emphysema or smoking-related interstitial lung fibrosis.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Vaping , Heroína , Humanos , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , Fumar , Vaping/efeitos adversos
2.
Ann Diagn Pathol ; 19(3): 146-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25862495

RESUMO

Squamous cell carcinoma (SCC) can arise from different anatomical sites including the skin, head and neck, lung, esophagus, genital area, and so on. Despite the same histopathologic features and immunohistochemistry profile, the SCCs of different body sites can show tremendous differences in their presenting symptoms, risk factor associations, natural history, prognosis, and response to treatment. This may reflect the fact that SCCs are heterogenous and likely have unique molecular characteristics at different anatomical sites. Recurrent somatic mutations in the TERT promoter region were first reported in human melanomas. Subsequently, other tumors including cutaneous SCC were found to demonstrate high frequencies of the same mutations. However, the incidences of TERT promoter mutation in noncutaneous SCCs have not been systemically studied. We investigated the TERT promoter mutation status among SCCs from different sites. We collected 84 cases of SCC from the skin (27), head and neck (12), lung (25), and cervix (10), as well as 10 cases of urothelial carcinoma with squamous differentiation (UC-SqD). We found that the frequencies of TERT promoter mutation among SCC of different sits are quite heterogenous: ~70% in skin SCC and UC-SqD, 16.67% in head and neck SCC, and 0% in lung and cervix SCC. These results may support the hypothesis of different carcinogenesis mechanisms of SCC in different sites. It also indicates that TERT promoter mutation could be a biomarker for distinguishing skin SCC or UC-SqD vs pulmonary SCC.


Assuntos
Carcinoma de Células Escamosas/genética , Mutação , Telomerase/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Melanoma/genética , Melanoma/patologia , Reação em Cadeia da Polimerase/métodos , Regiões Promotoras Genéticas , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
3.
Cancer Res ; 74(11): 3146-56, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24675361

RESUMO

Although several groups have demonstrated that concomitant use of MEK and phosphoinositide 3-kinase (PI3K) inhibitors (MEKi/PI3Ki) can induce dramatic tumor regressions in mouse models of KRAS-mutant non-small cell lung cancer (NSCLC), ongoing clinical trials investigating this strategy have been underwhelming to date. While efficacy may be hampered by a narrow therapeutic index, the contribution of biologic heterogeneity in the response of KRAS-mutant NSCLCs to MEKi/PI3Ki has been largely unexplored. In this study, we find that most human KRAS-mutant NSCLC cell lines fail to undergo marked apoptosis in response to MEKi/PI3Ki, which is key for tumor responsiveness in vivo. This heterogeneity of apoptotic response occurs despite relatively uniform induction of growth arrest. Using a targeted short hairpin RNA screen of BCL-2 family members, we identify BIM, PUMA, and BCL-XL as key regulators of the apoptotic response induced by MEKi/PI3Ki, with decreased expression of BIM and PUMA relative to BCL-XL in cell lines with intrinsic resistance. In addition, by modeling adaptive resistance to MEKi/PI3Ki both in vitro and in vivo, we find that, upon the development of resistance, tumors have a diminished apoptotic response due to downregulation of BIM and PUMA. These results suggest that the inability to induce apoptosis may limit the effectiveness of MEKi/PI3Ki for KRAS-mutant NSCLCs by contributing to intrinsic and adaptive resistance to this therapy.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas ras/genética , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Proteínas ras/metabolismo
4.
Clin Cancer Res ; 19(22): 6183-92, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24045185

RESUMO

PURPOSE: Amplification of MYC is one of the most common genetic alterations in lung cancer, contributing to a myriad of phenotypes associated with growth, invasion, and drug resistance. Murine genetics has established both the centrality of somatic alterations of Kras in lung cancer, as well as the dependency of mutant Kras tumors on MYC function. Unfortunately, drug-like small-molecule inhibitors of KRAS and MYC have yet to be realized. The recent discovery, in hematologic malignancies, that bromodomain and extra-terminal (BET) bromodomain inhibition impairs MYC expression and MYC transcriptional function established the rationale of targeting KRAS-driven non-small cell lung cancer (NSCLC) with BET inhibition. EXPERIMENTAL DESIGN: We performed functional assays to evaluate the effects of JQ1 in genetically defined NSCLC cell lines harboring KRAS and/or LKB1 mutations. Furthermore, we evaluated JQ1 in transgenic mouse lung cancer models expressing mutant kras or concurrent mutant kras and lkb1. Effects of bromodomain inhibition on transcriptional pathways were explored and validated by expression analysis. RESULTS: Although JQ1 is broadly active in NSCLC cells, activity of JQ1 in mutant KRAS NSCLC is abrogated by concurrent alteration or genetic knockdown of LKB1. In sensitive NSCLC models, JQ1 treatment results in the coordinate downregulation of the MYC-dependent transcriptional program. We found that JQ1 treatment produces significant tumor regression in mutant kras mice. As predicted, tumors from mutant kras and lkb1 mice did not respond to JQ1. CONCLUSION: Bromodomain inhibition comprises a promising therapeutic strategy for KRAS-mutant NSCLC with wild-type LKB1, via inhibition of MYC function. Clinical studies of BET bromodomain inhibitors in aggressive NSCLC will be actively pursued. Clin Cancer Res; 19(22); 6183-92. ©2013 AACR.


Assuntos
Azepinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Proteínas Quinases Ativadas por AMP , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética
5.
Cancer Cell ; 23(1): 121-8, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23245996

RESUMO

KRAS is the most commonly mutated oncogene, yet no effective targeted therapies exist for KRAS mutant cancers. We developed a pooled shRNA-drug screen strategy to identify genes that, when inhibited, cooperate with MEK inhibitors to effectively treat KRAS mutant cancer cells. The anti-apoptotic BH3 family gene BCL-XL emerged as a top hit through this approach. ABT-263 (navitoclax), a chemical inhibitor that blocks the ability of BCL-XL to bind and inhibit pro-apoptotic proteins, in combination with a MEK inhibitor led to dramatic apoptosis in many KRAS mutant cell lines from different tissue types. This combination caused marked in vivo tumor regressions in KRAS mutant xenografts and in a genetically engineered KRAS-driven lung cancer mouse model, supporting combined BCL-XL/MEK inhibition as a potential therapeutic approach for KRAS mutant cancers.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Sulfonamidas/farmacologia , Proteína bcl-X/antagonistas & inibidores , Compostos de Anilina/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Benzimidazóis/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sulfonamidas/uso terapêutico
6.
Cancer Res ; 72(13): 3302-11, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22552292

RESUMO

Tyrosine kinase inhibitors (TKI) that target the EGF receptor (EGFR) are effective in most non-small cell lung carcinoma (NSCLC) patients whose tumors harbor activating EGFR kinase domain mutations. Unfortunately, acquired resistance eventually emerges in these chronically treated cancers. Two of the most common mechanisms of acquired resistance to TKIs seen clinically are the acquisition of a secondary "gatekeeper" T790M EGFR mutation that increases the affinity of mutant EGFR for ATP and activation of MET to offset the loss of EGFR signaling. Although up to one-third of patient tumors resistant to reversible EGFR TKIs harbor concurrent T790M mutation and MET amplification, potential therapies for these tumors have not been modeled in vivo. In this study, we developed a preclinical platform to evaluate potential therapies by generating transgenic mouse lung cancer models expressing EGFR-mutant Del19-T790M or L858R-T790M, each with concurrent MET overexpression. We found that monotherapy targeting EGFR or MET alone did not produce significant tumor regression. In contrast, combination therapies targeting EGFR and MET simultaneously were highly efficacious against EGFR TKI-resistant tumors codriven by Del19-T790M or L858R-T790M and MET. Our findings therefore provide an in vivo model of intrinsic resistance to reversible TKIs and offer preclinical proof-of-principle that combination targeting of EGFR and MET may benefit patients with NSCLC.


Assuntos
Receptores ErbB/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias Pulmonares/terapia , Mutação , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Sequência de Bases , Primers do DNA , Receptores ErbB/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
7.
Nat Med ; 17(7): 875-82, 2011 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-21706030

RESUMO

Cells that are deficient in homologous recombination, such as those that lack functional breast cancer-associated 1 (BRCA1) or BRCA2, are hypersensitive to inhibition of poly(ADP-ribose) polymerase (PARP). However, BRCA-deficient tumors represent only a small fraction of adult cancers, which might restrict the therapeutic utility of PARP inhibitor monotherapy. Cyclin-dependent kinase 1 (Cdk1) phosphorylates BRCA1, and this is essential for efficient formation of BRCA1 foci. Here we show that depletion or inhibition of Cdk1 compromises the ability of cells to repair DNA by homologous recombination. Combined inhibition of Cdk1 and PARP in BRCA-wild-type cancer cells resulted in reduced colony formation, delayed growth of human tumor xenografts and tumor regression with prolonged survival in a mouse model of lung adenocarcinoma. Inhibition of Cdk1 did not sensitize nontransformed cells or tissues to inhibition of PARP. Because reduced Cdk1 activity impaired BRCA1 function and consequently, repair by homologous recombination, inhibition of Cdk1 represents a plausible strategy for expanding the utility of PARP inhibitors to BRCA-proficient cancers.


Assuntos
Proteína BRCA1/fisiologia , Neoplasias da Mama/tratamento farmacológico , Proteína Quinase CDC2/fisiologia , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Proteína BRCA1/metabolismo , Benzimidazóis/farmacologia , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Indazóis/farmacologia , Indóis/farmacologia , Masculino , Camundongos , Transplante de Neoplasias , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/fisiopatologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Fosforilação , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA