Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 18: 2775-2791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984208

RESUMO

Background: Psoriasis is a common chronic inflammatory skin condition. The emergence of psoriasis has been linked to dysbiosis of the microbiota on the skin surface and an imbalance in the immunological microenvironment. In this study, we investigated the therapeutic impact of topical thymopentin (TP5) on imiquimod (IMQ)-induced psoriasis in mice, as well as the modulatory influence of TP5 on the skin immune milieu and the skin surface microbiota. Methods: The IMQ-induced psoriasis-like lesion mouse model was used to identify the targets and molecular mechanisms of TP5. Immunofluorescence was employed to identify differences in T-cell subset expression before and after TP5 therapy. Changes in the expression of NF-κB signaling pathway components were assessed using Western blotting (WB). 16S rRNA sequencing and network pharmacology were used to detect changes in the skin flora before and after TP5 administration. Results: In vivo, TP5 reduced IMQ-induced back inflammation in mice. H&E staining revealed decreased epidermal thickness and inflammatory cell infiltration with TP5. Masson staining revealed decreased epidermal and dermal collagen infiltration after TP5 administration. Immunohistochemistry showed that TP5 treatment dramatically reduced IL-17 expression. Results of the immunoinfiltration analyses showed psoriatic lesions with more T-cell subsets. According to the immunofluorescence results, TP5 dramatically declined the proportions of CD4+, Th17, ROR+, and CD8+ T cells. WB revealed that TP5 reduced NF-κB pathway expression in skin tissues from IMQ-induced psoriasis model mice. 16S rRNA sequencing revealed a significant increase in Burkholderia and Pseudomonadaceae_Pseudomonas and a significant decrease in Staphylococcaceae_Staphylococcus, Aquabacterium, Herbaspirillum, and Balneimonas. Firmicutes dominated the skin microbial diversity after TP5 treatment, while Bacteroidetes, Verrucomicrobia, TM7, Proteobacteria, Actinobacteria, Acidobacteria, Gemmatimonadetes, and other species dominated in the IMQ group. Conclusion: TP5 may treat psoriasis by modulating the epidermal flora, reducing NF-κB pathway expression, and influencing T-cell subsets.


Assuntos
Imiquimode , Psoríase , Pele , Timopentina , Psoríase/tratamento farmacológico , Psoríase/induzido quimicamente , Psoríase/imunologia , Psoríase/patologia , Animais , Camundongos , Pele/efeitos dos fármacos , Pele/patologia , Imiquimode/farmacologia , Timopentina/farmacologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Feminino , Microbiota/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
2.
Phytomedicine ; 132: 155856, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39024674

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a common skin condition that causes chronic and recurring eczema lesions. Prior research has indicated that Cannabis fructus, the mature fruit of Cannabis sativa, has an antioxidant effect. Historically, Cannabis fructus has been used in cosmetics and medicine. However, there is limited knowledge regarding its biological components and the mechanisms by which it prevents and treats AD. OBJECTIVES: HPLC-ESI-MS/MS analysis was utilized to identify the main compounds of Cannabis fructus, and trilinolein was extracted using chromatographic techniques. The potential of trilinolein in the prevention of AD was assessed, and its underlying mechanisms of action were elucidated. METHODS: The distribution of distinct cellular subpopulations and the principal biological processes implicated in the pathogenesis of AD were assessed through a comparative study involving chronic AD patients and healthy controls (HCs). Differential gene expression was validated in clinical samples from the lesions of AD patients and the healthy skin of controls. The pharmacodynamic activity of trilinolein was validated in dinitrochlorobenzene (DNCB)-induced BALB/c mice and in IL-4- and TNF-α-induced HaCaT cells. Proteomics analyse was employed to investigate its mechanisms. RESULTS: Single-cell transcriptome analysis revealed that chronic AD is characterized by abnormal keratinocyte differentiation and oxidative stress damage. When topically applied, trilinolein can effectively improve AD-like skin lesions induced by DNCB. It increases the expression of terminal differentiation proteins and decreases the expression of NADPH oxidase 2 (NOX2), with a therapeutic effect comparable to that of the positive control drug crisaborole. Additionally, trilinolein reduced ROS fluorescence intensity, restored mitochondrial morphology and membrane potential, and decreased mitochondrial DNA (mtDNA) release in keratinocytes stimulated with IL-4 and TNF-α. Moreover, trilinolein increased the protein expression of AhR, CYP1A1, and Nrf2 in a dose-dependent manner. The effect of trilinolein on keratinocyte terminal differentiation proteins and ROS levels was blocked by the addition of an AhR inhibitor. CONCLUSION: The study suggests that trilinolein from Cannabis fructus alleviates NOX2-dependent mitochondrial dysfunction and repair the skin barrier via AhR-Nrf2 pathway, making it a promising agent for the prevention and treatment of AD.

3.
Heliyon ; 10(10): e31376, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38818172

RESUMO

Background: Palmoplantar warts (PWs) are a usual skin disease associated with human papillomavirus (HPV) that can affect patients' quality of life. The traditional Chinese medicine (TCM) Weiren Xiaoyou formula (WRXYF) is a relatively gentle and effective therapy that has achieved good therapeutic effects in clinical practice, but its mechanism has not yet been studied. Methods: A meta-analysis was carried out to identify the potential advantages of topical TCM for PW treatment. Clinical cases suggested that WRXYF was an effective therapeutic agent against PWs. Network pharmacology was utilized to predict potential targets for the main bioactive compound, tanshinone IIA (Tan IIA), in WRXYF. High-performance liquid chromatography with electrospray mass spectrometry (HPLC/ESI-MS) was applied to detect major components. The bioactivity of Tan IIA against PWs was then validated with quantitative polymerase chain reaction (q-PCR), fluorescence in situ hybridization (FISH), electron microscopy and Western blotting. Results: A meta-analysis was conducted on 10 randomized clinical trials (RCTs) involving 2260 participants suggested that topical TCM could more effectively treat PWs than conventional medications. Network pharmacology identified Tan IIA as a candidate agent from 17 major compounds assessed by HPLC/ESI-MS because of its stable binding with 10 PW targets. HPV2, HPV27, and HPV57 were the main infectious strains in tissues obtained from PW patients and in HPV-infected HaCaT cells. Tan IIA treatment effectively destroyed viral particles and reduced the viral copy numbers of the three HPV subtypes. The results shown that Tan IIA has the ability to halt the cell cycle of HPV-infected HaCaT cells specifically in the G0/G1 phase. A total of 6 cell cycle-related proteins were regulated after Tan IIA treatment, demonstrating the role of Tan IIA in inhibiting the cell cycle. Conclusion: Tan IIA, the primary bioactive constituent in WRXYF, enhances PWs by halting the cell cycle in the G0/G1 phase via modulation of the p53 signaling pathway.

4.
Noncoding RNA Res ; 9(3): 901-912, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38616861

RESUMO

Background: DNA methylation is a crucial epigenetic alteration involved in diverse biological processes and diseases. Nevertheless, the precise role of DNA methylation in chemotherapeutic drug-induced alopecia remains unclear. This study examined the role and novel processes of DNA methylation in regulating of chemotherapeutic drug-induced alopecia. Methods: A mouse model of cyclophosphamide (CTX)-induced alopecia was established. Hematoxylin-eosin staining and immunohistochemical staining for the Ki67 proportion and a mitochondrial membrane potential assay (JC-1) were performed to assess the structural integrity and proliferative efficiency of the hair follicle stem cells (HFSCs). Immunofluorescence staining and real-time fluorescence quantitative PCR (RT-qPCR) were performed to determine the expression levels of key HFSC markers, namely Lgr5, CD49f, Sox9, CD200, and FZD10. Differential DNA methylation levels between the normal and CTX-induced model groups were determined through simple methylation sequencing and analyzed using bioinformatics tools. The expression levels of miR-365-1, apoptosis markers, and DAP3 were detected through RT-qPCR and western blotting. In parallel, primary mouse HFSCs were extracted and used as a cell model, which was constructed using 4-hydroperoxycyclophosphamide. The luciferase reporter gene assay was conducted to confirm miR-365-1 binding to DAP3. To measure the expression of relevant indicators, superoxide dismutase (SOD) and malondialdehyde (MDA) kits were used. Methylation-specific PCR (MS-PCR) was performed to determine DNA methylation levels. The regulatory relationship within HFSCs was confirmed through plasmid overexpression of miR-365-1 and DAP3. Result: In the alopecia areata model, a substantial number of apoptotic cells were observed within the hair follicles on the mouse backs. Immunofluorescence staining revealed that the expression of HFSC markers significantly reduced in the CTX group. Both RT-qPCR and western blotting demonstrated a noteworthy difference in DNA methyltransferase expression. Simple methylation sequencing unveiled that DNA methylation substantially increased within the dorsal skin of the CTX group. Subsequent screening identified miR-365-1 as the most differentially expressed miRNA. miR-365-1 was predicted and confirmed to bind to the target gene DAP3. In the CTX group, SOD and ATP expression markedly reduced, whereas MDA levels were significantly elevated. Cellular investigations revealed 4-HC-induced cell cycle arrest and decreased expression of HFSC markers. MS-PCR indicated hypermethylation modification of miR-365-1 in the 4-HC-induced HFSCs. The luciferase reporter gene experiment confirmed the binding of miR-365-1 to the DAP3 promoter region. miR-365-1 overexpression dramatically reduced apoptotic protein expression in the HFSCs. However, this effect was slightly reversed after DAP3 overexpression in lentivirus. Conclusion: This study explored the occurrence of miR-365-1 DNA methylation in chemotherapeutic drug-induced alopecia. The results unveiled that miR-365-1 reduces cell apoptosis by targeting DAP3 in HFSCs, thereby revealing the role of DNA methylation of the miR-365-1 promoter in chemotherapeutic drug-induced alopecia.

5.
Mol Cancer ; 23(1): 77, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627681

RESUMO

Emerging tumor immunotherapy methods encompass bispecific antibodies (BSABs), immune checkpoint inhibitors (ICIs), and adoptive cell immunotherapy. BSABs belong to the antibody family that can specifically recognize two different antigens or epitopes on the same antigen. These antibodies demonstrate superior clinical efficacy than monoclonal antibodies, indicating their role as a promising tumor immunotherapy option. Immune checkpoints are also important in tumor immunotherapy. Programmed cell death protein-1 (PD-1) is a widely acknowledged immune checkpoint target with effective anti-tumor activity. PD-1 inhibitors have demonstrated notable therapeutic efficacy in treating hematological and solid tumors; however, more than 50% of patients undergoing this treatment exhibit a poor response. However, ICI-based combination therapies (ICI combination therapies) have been demonstrated to synergistically increase anti-tumor effects and immune response rates. In this review, we compare the clinical efficacy and side effects of BSABs and ICI combination therapies in real-world tumor immunotherapy, aiming to provide evidence-based approaches for clinical research and personalized tumor diagnosis and treatment.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Anticorpos Biespecíficos/efeitos adversos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Imunoterapia/efeitos adversos , Imunoterapia/métodos
6.
Genet Test Mol Biomarkers ; 27(12): 370-383, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156909

RESUMO

Purpose: The aim of this study was to characterize key biomarkers associated with pyroptosis in atopic dermatitis (AD). Materials and methods: To identify the differentially expressed pyroptosis-related genes (DEPRGs), the gene expression profiles GSE16161 and GSE32924 from the Gene Expression Omnibus (GEO) database were utilized. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to determine the potential biological functions and involved pathways. Furthermore, protein-protein interaction network analyses were performed to identify hub genes. The types and proportions of infiltrating immune cells were detected by immune filtration analysis using CIBERSORT. A 12-axis competing endogenous RNA (ceRNA) network was constructed utilizing the miRNet database. Immunohistochemistry (IHC) further validated the differential expression of a key gene IRF1 in the skin tissues collected from AD patients. The collection of skin tissue from human subjects in this study were reviewed and approved by the IRB of Yueyang Integrated Chinese and Western Medicine Hospital (KYSKSB2020-125). Results: The study identified a total of 76 DEPRGs, which were enriched in genes associated with the inflammatory response and immune regulation. There was a higher percentage of activated dendritic cells and a lower percentage of resting mast cells in AD samples. PVT1 expression was associated with upregulation of hub genes including CXCL8, IRF1, MKI67, and TP53 in the ceRNA network and was correlated with activated dendritic cells in AD. As a transcription factor, IRF1 could regulate the production of downstream inflammatory factors. The IHC study revealed that IRF1 was overexpressed in the skin tissues of AD patients, which were consistent with the results of the bioinformatic study. Conclusions: IRF1 and its related genes were identified as key pyroptosis-related biomarkers in AD, which is a crucial pathway in the pathogenesis of AD.


Assuntos
Dermatite Atópica , Fator Regulador 1 de Interferon , Piroptose , Humanos , Biologia Computacional , Dermatite Atópica/genética , Fator Regulador 1 de Interferon/genética , Prognóstico , Piroptose/genética
7.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5882-5889, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36472007

RESUMO

This study aims to investigate the therapeutic effect of icariin(ICA) on thioacetamide(TAA)-induced femoral osteolysis in rats. RAW264.7 cells were treated with TAA and ICA. Cell counting kit-8(CCK-8) assay was used to detect cell proliferation, and tartrate-resistant acid phosphatase(TRAP) staining to examine the formation of osteoclasts. The expression of TRAP, cathepsin K, c-FOS, and NFATc1 in RAW264.7 cells was determined by Western blot and immunofluorescence method. Thirty-two SD rats were randomized into the control group, TAA group(intraperitoneal injection of TAA at 300 mg·kg~(-1)), ICA group(gavage of ICA at 600 mg·kg~(-1)) and TAA + ICA group(intraperitoneal injection of TAA at 300 mg·kg~(-1) and gavage of ICA at 600 mg·kg~(-1)). Administration was performed every other day for 6 weeks. Body weight and length of femur were recorded at execution. Pathological injury and osteoclast differentiation of femur were observed based on hematoxylin-eosin(HE) staining and TRAP staining, and the changes of bone metabolism-related indexes alkaline phosphatase(ALP), calcium(Ca), phosphorus(P), magnesium(Mg), and cross-linked N-telopeptide of type Ⅰ collagen(NTX-Ⅰ) in serum were detected. Three-point bending test and micro-CT were applied to evaluate the quality of femur, and Western blot to detect the levels of osteoclast-related proteins TRAP, cathepsin K, RANK, RANKL, p38, p-p38, ERK, p-ERK, JNK, p-JNK, c-Fos, and NFATc1. The results showed ICA could inhibit TAA-induced production of TRAP-positive cells, the expression of osteoclast-related proteins, and nuclear translocation of NFATc1. ICA alleviated the weight loss, reduction of femur length, and growth inhibition induced by TAA in SD rats. ICA ameliorated the decline of femur elastic modulus caused by TAA and significantly restored trabecular bone mineral density(BMD), trabecular pattern factor(Tb.Pf), trabecular number(Tb.N), trabecular thickness(Tb.Th), and structure model index(SMI), thus improving bone structure. Western blot results showed ICA suppressed femoral osteoclast differentiation induced by TAA through RANKL-p38/ERK-NFATc1 signaling pathway. ICA inhibits osteoclast differentiation and prevents TAA-induced osteolysis by down-regulating RANKL-p38/ERK-NFAT signaling pathway.


Assuntos
Reabsorção Óssea , Osteólise , Ratos , Animais , Osteoclastos , Catepsina K/genética , Catepsina K/metabolismo , Catepsina K/farmacologia , Tioacetamida/metabolismo , Tioacetamida/farmacologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osteólise/metabolismo , Osteólise/patologia , Diferenciação Celular , Ratos Sprague-Dawley , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo
8.
Front Med (Lausanne) ; 9: 938761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847802

RESUMO

Bullous pemphigoid (BP) is a life-threatening autoimmune disease of the skin that is mainly characterized by a large range of tension blisters and intense itching of the skin. The 1-year mortality rate of BP was 23.5%. Superinfection caused by skin lesion ulceration is one of the important causes of disease death. Therefore, it is challenging to control infection and improve skin wound healing. Here, we report the case of an elderly woman who presented with BP and involved the oral mucosa. The patient was successfully treated with hormones combined with topical berberine, and 95% of the patients' lesions healed completely after 1 month. In addition, we inductively analyzed the current treatments for BP to provide a reference for BP clinical treatment.

9.
BMC Pharmacol Toxicol ; 23(1): 29, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526079

RESUMO

BACKGROUND: Thioacetamide (TAA) is used in various fields, such as synthetic drugs, organic chemical synthesis, and materials chemistry. TAA is mainly used to establish animal liver injury models and other organ damage models to explore their mechanisms for helping patients with liver disease. Liver damage can lead to abnormal expression of some enzymes in the serum, so we detected the appropriate enzyme levels in the serum of SD rats to verify the damage of TAA to the liver. More importantly, TAA caused bone damage is barely understood. Therefore, our research aims to establish a rat model reflecting the acute bone damage injury caused by TAA. METHODS: The SD rats were intraperitoneally injected with normal saline (0.9%) or TAA (200 mg/kg, 400 mg/kg) for 1 month (once the other day). After the last intraperitoneal injection, serum samples from rats were used for biochemical tests. Masson staining is used to detect liver damage, and micro-CT is used to detect the changes in bone. Moreover, the three-point bending experiment was used to detect the force range of the hind limbs of SD rats. RESULTS: Compared with the control group, after the intraperitoneal injection of TAA, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid (UA), total bile acid (TBA), alkaline phosphatase (ALP), carbamide (UREA) and creatinine (CREA) rose sharply, while the levels of serum content of total protein (TP), lactate dehydrogenase (LDH), calcium (Ca) and phosphorus (P) were severely reduced. After TAA administration, collagen fibers were deposited and liver fibrosis was obvious. Micro-CT results showed that the bone surface, tissue surface, bone volume, and tissue volume of rats with an intraperitoneal injection of TAA were significantly reduced. In addition, the bones of rats with an intraperitoneal injection of TAA can resist less pressure and are prone to fractures. CONCLUSIONS: TAA can cause liver damage in SD rats, which is explained by the changes in serum biochemical indicators and the deposition of liver collagen. More importantly, TAA can reduce bone mineral density and increase the separation of bone trabeculae in SD rats, and finally lead to bone injury. This suggests that TAA may become an ideal model to investigate abnormal bone metabolism after liver injury.


Assuntos
Osso e Ossos , Fígado , Tioacetamida , Alanina Transaminase , Animais , Aspartato Aminotransferases , Osso e Ossos/metabolismo , Osso e Ossos/fisiopatologia , Fígado/metabolismo , Ratos , Ratos Sprague-Dawley , Tioacetamida/toxicidade
10.
J Integr Med ; 20(4): 376-384, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35491357

RESUMO

OBJECTIVE: Psoriasis is a common chronic inflammatory skin disease that is prone to recurrence, and the proinflammatory factor, cysteine-rich protein 61 (Cyr61), is important in its pathophysiology. Long-term clinical practice has shown that Sancao Formula (SC), a Chinese herbal compound, is effective in the treatment of psoriasis, but the precise mechanism remains unknown. In this study, we investigate the mechanism by which SC extract alleviates imiquimod (IMQ)-induced psoriasis. METHODS: The expression of Cyr61 in psoriatic lesions and normal healthy skin was detected using immunohistochemical analysis to investigate the biological role of Cyr61 in models of psoriatic inflammation. A psoriatic mouse model was established by topical application of IMQ, and the effect of topical application of SC extract was evaluated using the psoriasis area and severity index (PASI) score, hematoxylin-eosin staining, and histopathological features of the skin. Next, a HaCaT cell inflammation model was established using interferon-γ (IFN-γ), and the effect of SC extract on the mRNA and protein levels of Cyr61 and intercellular cell adhesion molecule-1 (ICAM-1) was confirmed using Western blot and quantitative real-time polymerase chain reaction analyses. RESULTS: Immunohistochemical staining showed that the expression of Cyr61 in psoriatic lesions was higher than that in normal skin samples (78.26% vs 41.18%, P < 0.05), and the number of Cyr61-positive cells in psoriatic lesions was also significantly higher than in normal skin (18.66 ± 2.51 vs 4.33 ± 1.52, P < 0.05). Treatment in mice with IMQ-induced psoriasis showed that SC extract could significantly improve the inflammatory phenotype, PASI score (10.875 ± 0.744 vs 3.875 ± 0.582, P < 0.05), and pathological features compared with those in IMQ model group; SC treatment was also associated with decreased levels of Cyr61 and ICAM-1. In the IFN-γ-induced inflammatory cell model, the mRNA and protein levels of Cyr61 and ICAM-1 were upregulated, while the SC extract downregulated the levels of Cyr61 and ICAM-1. CONCLUSION: The results provide a theoretical basis for the involvement of Cyr61 in the pathogenesis of psoriasis, and suggest that SC should be used to target Cyr61 for the prevention of psoriasis recurrence.


Assuntos
Proteína Rica em Cisteína 61 , Medicamentos de Ervas Chinesas , Psoríase , Animais , China , Proteína Rica em Cisteína 61/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Imiquimode/efeitos adversos , Inflamação/tratamento farmacológico , Molécula 1 de Adesão Intercelular/genética , Interferon gama , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/patologia , RNA Mensageiro/metabolismo , RNA Mensageiro/uso terapêutico
11.
Microbiol Spectr ; 10(1): e0149521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196797

RESUMO

The apicoplast, which harbors key pathways involved in biosynthesis of vital metabolites, is a unique and essential nonphotosynthetic plastid organelle in apicomplexan parasites. Intriguingly, autophagy-related protein 8 (Atg8), a highly conserved eukaryotic protein, can localize to the outermost membrane of the apicoplast and modulate its inheritance in both Toxoplasma and Plasmodium parasites. The Atg8-Atg3 interaction plays a key role in Atg8 lipidation and localization, and our previously work in Toxoplasma has suggested that the core Atg8-family interacting motif (AIM) in TgAtg3, 239FADI242, and the R27 residue of TgAtg8 contribute to TgAtg8-TgAtg3 interaction in vitro. However, little is known about the function of this interaction or its importance in tachyzoite growth in Toxoplasma gondii. Here, we generated two complemented cell lines, TgAtg3F239A/I242A and TgAtg8R27E, based on the TgAtg3 and TgAtg8 conditional knockdown cell lines, respectively. We found that both mutant complemented cell lines were severely affected in terms of tachyzoite growth and displayed delayed death upon conditional knockdown of endogenous TgAtg3 or TgAtg8. Intriguingly, both complemented lines appeared to be defective in TgAtg8 lipidation and apicoplast inheritance. Moreover, we showed that the interaction of TgAtg8 and TgAtg3 is critical for TgAtg8 apicoplast localization. In addition, we found that the TgAtg3F239A/I242A complemented line exhibits an integral mitochondrial network upon ablation of endogenous TgAtg3, which is distinct from TgAtg3-depleted parasites with a fragmented mitochondrial network. Taken together, this work solidifies the contribution of the TgAtg8-TgAtg3 interaction to apicoplast inheritance and the growth of T. gondii tachyzoites. IMPORTANCEToxoplasma gondiiis a widespread intracellular parasite infecting a variety of warm-blooded animals, including humans. Current frontline treatment of toxoplasmosis suffers many drawbacks, including toxicity, drug resistance, and failure to eradicate tissue cysts, underscoring the need to identify novel drug targets for suppression or treatment of toxoplasmosis. TgAtg8 is thought to serve multiple functions in lipidation and is considered essential to the growth and development of both tachyzoites and bradyzoites. Here, we show that Toxoplasma gondii has adapted a conserved Atg8-Atg3 interaction, required for canonical autophagy in other eukaryotes, to function specifically in apicoplast inheritance. Our finding not only highlights the importance of TgAtg8-TgAtg3 interaction in tachyzoite growth but also suggests that this interaction is a promising drug target for the therapy of toxoplasmosis.


Assuntos
Apicoplastos/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo , Toxoplasmose/microbiologia , Motivos de Aminoácidos , Apicoplastos/química , Apicoplastos/genética , Humanos , Mutação , Ligação Proteica , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Toxoplasma/química , Toxoplasma/genética
12.
Mol Med Rep ; 25(4)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35169865

RESUMO

There is an increasing incidence of destructive bone disease caused by osteoclast proliferation. This is characterized by reduced bone mass and imbalance of bone homeostasis. Icariin (ICA), a flavonoid compound isolated from Epimedium, has anti­osteoporosis activity and inhibits the formation of osteoclasts and bone resorption. The purpose of the present study was to investigate the protective effect of ICA on osteoclastic differentiation induced by thioacetamide (TAA) and its possible mechanism in Sprague Dawley (SD) rats. In the present study, SD rats were intraperitoneally injected with TAA (300 mg/kg) for the bone loss model, treated with ICA (600 mg/kg, intragastric gavage) in the ICA group and TAA+ICA group for treatment of bone loss for 6 weeks. Indexes associated with bone metabolism, such as alkaline phosphatase, N­terminal telopeptide of type­I collagen (NTX­I), calcium (Ca), phosphorus (P) and magnesium (Mg) in the serum, were detected. Osteoclast differentiation of femoral tissues was detected by hematoxylin and eosin and tartrate­resistant acid phosphatase staining. The femoral bone mass was evaluated using a three­point bending test and micro computed tomography. Western blotting was used to detect the expression levels of osteoclast­related proteins in each group. In the rats treated with TAA, the serum concentrations of Ca, P and Mg were decreased, the serum concentration of NTX­I was increased, osteoclast differentiation of the femur was increased, femur bone stress and bone mass were decreased and the bone loss and osteoclast formation were reduced after ICA treatment. In addition, ICA inhibited the protein expression of receptor activator of nuclear factor κ­Β ligand (RANKL), receptor activator of nuclear factor κ­B (RANK), p38, ERK, c­Fos and nuclear factor of activated T cells 1 (NFATc1) in the femur of rats treated with TAA. The results suggested that ICA may inhibit osteoclast differentiation by downregulating the RANKL­p38/ERK­NFAT signaling pathway and prevent TAA­induced bone loss. The results are helpful to understand the mechanism of osteoclast differentiation induced by TAA, as well as the antiresorptive activity and molecular mechanism of ICA, and to provide new ideas for the treatment of osteolytic diseases.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Flavonoides/farmacologia , Substâncias Protetoras/farmacologia , Ligante RANK/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatase Alcalina/sangue , Animais , Peso Corporal/efeitos dos fármacos , Reabsorção Óssea/induzido quimicamente , Cálcio/sangue , Diferenciação Celular/efeitos dos fármacos , Colágeno Tipo I/sangue , Modelos Animais de Doenças , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Flavonoides/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Magnésio/sangue , Masculino , Osteoclastos/efeitos dos fármacos , Peptídeos/sangue , Fósforo/sangue , Substâncias Protetoras/uso terapêutico , Ratos Sprague-Dawley , Tioacetamida/toxicidade , Microtomografia por Raio-X
13.
Protein Pept Lett ; 28(1): 55-62, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32586241

RESUMO

BACKGROUND: Coagulation factor XIIIa(FXIIIa) plays a critical role in the final stage of blood coagulation. It is extremely important in wound healing, tissue repairing and promoting cell adhesion. The deficiency of the coagulation factor can cause hemorrhage and slow wound healing. OBJECTIVE: In this study, recombinant pPICZαC-FXIIIa was expressed in Pichia pastoris, purified as well as its biological activity was determined. METHODS: The FXIIIa fragment obtained from the human placenta was inserted into pPICZαC to obtain pPICZαC-FXIIIa, which was transformed into X33 after linearization, and FXIIIa inserted into Pichia pastoris X33 was screened for methanol induction. The expressed product was identified by western blotting, then the supernatant was purified by affinity chromatography, and the purified product was determined by plasma coagulation experiment. RESULTS: Polymerase Chain Reaction(PCR) showed that the FXIIIa fragment of 2250 bp was inserted successfully into pPICZαC. The expression and purification products of the same molecular weight as target protein(about 83 kDa) were obtained, which solidified significantly when reacted with plasma. CONCLUSION: The expression and purification products were successful, with sufficient biological activity, which can be used as a candidate FXIIIa hemostatic agent in genetic engineering.


Assuntos
Fator XIIIa , Expressão Gênica , Saccharomycetales/metabolismo , Fator XIIIa/biossíntese , Fator XIIIa/química , Fator XIIIa/genética , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomycetales/genética
14.
Parasit Vectors ; 13(1): 242, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393321

RESUMO

BACKGROUND: Toxoplasma gondii is a zoonotic pathogen that causes toxoplasmosis and leads to serious public health problems in developing countries. However, current clinical therapeutic drugs have some disadvantages, such as serious side effects, a long course of treatment and the emergence of drug-resistant strains. The urgent need to identify novel anti-Toxoplasma drugs has initiated the effective strategy of repurposing well-characterized drugs. As a principled screening for the identification of effective compounds against Toxoplasma gondii, in the current study, a collection of 666 compounds were screened for their ability to significantly inhibit Toxoplasma growth. METHODS: The inhibition of parasite growth was determined using a luminescence-based ß-galactosidase activity assay. Meanwhile, the effect of compounds on the viability of host cells was measured using CCK8. To assess the inhibition of the selected compounds on discrete steps of the T. gondii lytic cycle, the invasion, intracellular proliferation and egress abilities were evaluated. Finally, a murine infection model of toxoplasmosis was used to monitor the protective efficacy of drugs against acute infection of a highly virulent RH strain. RESULTS: A total of 68 compounds demonstrated more than 70% parasite growth inhibition. After excluding compounds that impaired host cell viability, we further characterized two compounds, NVP-AEW541 and GSK-J4 HCl, which had IC50 values for parasite growth of 1.17 µM and 2.37 µM, respectively. In addition, both compounds showed low toxicity to the host cell. Furthermore, we demonstrated that NVP-AEW541 inhibits tachyzoite invasion, while GSK-J4 HCl inhibits intracellular tachyzoite proliferation by halting cell cycle progression from G1 to S phase. These findings prompted us to analyse the efficacy of the two compounds in vivo by using established mouse models of acute toxoplasmosis. In addition to prolonging the survival time of mice acutely infected with T. gondii, both compounds had a remarkable ability to reduce the parasite burden of tissues. CONCLUSIONS: Our findings suggest that both NVP-AEW541 and GSK-J4 could be potentially repurposed as candidate drugs against T. gondii infection.


Assuntos
Antiprotozoários/farmacologia , Benzazepinas/farmacologia , Reposicionamento de Medicamentos , Pirimidinas/farmacologia , Pirróis/farmacologia , Toxoplasma/efeitos dos fármacos , Animais , Antiprotozoários/uso terapêutico , Benzazepinas/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Prepúcio do Pênis/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...