Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1146834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288434

RESUMO

Patients with the inherited disorder hereditary angioedema (HAE) suffer from episodes of soft tissue swelling due to excessive bradykinin production. In most cases, dysregulation of the plasma kallikrein-kinin system due to deficiency of plasma C1 inhibitor is the underlying cause. However, at least 10% of HAE patients have normal plasma C1 inhibitor activity levels, indicating their syndrome is the result of other causes. Two mutations in plasma protease zymogens that appear causative for HAE with normal C1 inhibitor activity have been identified in multiple families. Both appear to alter protease activity in a gain-of-function manner. Lysine or arginine substitutions for threonine 309 in factor XII introduces a new protease cleavage site that results in formation of a truncated factor XII protein (Δ-factor XII) that accelerates kallikrein-kinin system activity. A glutamic acid substitution for lysine 311 in the fibrinolytic protein plasminogen creates a consensus binding site for lysine/arginine side chains. The plasmin form of the variant plasminogen cleaves plasma kininogens to release bradykinin directly, bypassing the kallikrein-kinin system. Here we review work on the mechanisms of action of the FXII-Lys/Arg309 and Plasminogen-Glu311 variants, and discuss the clinical implications of these mechanisms.

2.
J Thromb Haemost ; 20(9): 2035-2045, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35638310

RESUMO

BACKGROUND: Deep vein thrombosis (DVT) and post-thrombotic syndrome (PTS) remain highly prevalent despite modern medical therapy. Contact activation is a promising target for safe antithrombotic anticoagulation. The anti-factor XI (FXI) monoclonal antibody 14E11 reduces circulating levels of FXI without compromising hemostasis. The human recombinant analog, AB023, is in clinical development. The role of FXI in mediation of inflammation during DVT resolution is unknown. OBJECTIVES: Investigate the effects of pharmacological targeting of FXI with 14E11 in an experimental model of venous thrombosis. METHODS: Adult wild-type CD1 mice were treated with subcutaneous anti-FXI antibody (14E11, 5 mg/kg) versus saline prior to undergoing surgical constriction of the inferior vena cava (IVC). Mice were evaluated at various time points to assess thrombus weight and volume, as well as histology analysis, ferumoxytol enhanced magnetic resonance imaging (Fe-MRI), and whole blood flow cytometry. RESULTS: 14E11-treated mice had reduced thrombus weights and volumes after IVC constriction on day 7 compared to saline-treated mice. 14E11 treatment reduced circulating monocytes by flow cytometry and macrophage content within thrombi as evaluated by histologic staining and Fe-MRI. Collagen deposition was increased at day 3 while CD31 and smooth muscle cell actin expression was increased at day 7 in the thrombi of 14E11-treated mice compared to saline-treated mice. CONCLUSION: Pharmacologic targeting of FXI enhances the early stages of experimental venous thrombus resolution in wild-type CD1 mice, and may be of interest for future clinical evaluation of the antibody in DVT and PTS.


Assuntos
Fator XI , Macrófagos , Trombose Venosa , Animais , Anticorpos Monoclonais , Modelos Animais de Doenças , Fator XI/antagonistas & inibidores , Fator XI/metabolismo , Macrófagos/metabolismo , Camundongos , Trombose Venosa/tratamento farmacológico , Trombose Venosa/patologia
3.
J Thromb Haemost ; 19(4): 1001-1017, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421301

RESUMO

BACKGROUND: Human coagulation factor (F) XI deficiency, a defect of the contact activation system, protects against venous thrombosis, stroke, and heart attack, whereas FXII, plasma prekallikrein, or kininogen deficiencies are asymptomatic. FXI deficiency, inhibition of FXI production, activated FXI (FXIa) inhibitors, and antibodies to FXI that interfere with FXI/FXII interactions reduce experimental thrombosis and inflammation. FXI inhibitors are antithrombotic in patients, and FXI and FXII deficiencies are atheroprotective in apolipoprotein E-deficient mice. OBJECTIVES: Investigate the effects of pharmacological targeting of FXI in experimental models of atherogenesis and established atherosclerosis. METHODS AND RESULTS: Low-density lipoprotein receptor-knockout (Ldlr-/- ) mice were administered high-fat diet (HFD) for 8 weeks; concomitantly, FXI was targeted with anti-FXI antibody (14E11) or FXI antisense oligonucleotide (ASO). 14E11 and FXI-ASO reduced atherosclerotic lesion area in proximal aortas when compared with controls, and 14E11 also reduced aortic sinus lesions. In an established disease model, in which therapy was given after atherosclerosis had developed, Ldlr-/- mice were fed HFD for 8 weeks and then administered 14E11 or FXI-ASO weekly until 16 weeks on HFD. In this established disease model, 14E11 and FXI-ASO reduced atherosclerotic lesion area in proximal aortas, but not in aortic sinus. In cultures of human endothelium, FXIa exposure disrupted VE-Cadherin expression and increased endothelial lipoprotein permeability. Strikingly, we found that 14E11 prevented the disruption of VE-Cadherin expression in aortic sinus lesions observed in the atherogenesis mouse model. CONCLUSION: Pharmacological targeting of FXI reduced atherogenesis in Ldlr-/- mice. Interference with the contact activation system may safely reduce development or progression of atherosclerosis.


Assuntos
Aterosclerose , Deficiência do Fator XI , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Coagulação Sanguínea , Fator XI/genética , Humanos , Lipoproteínas LDL , Camundongos , Receptores de LDL/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...