Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360417

RESUMO

Point-of-use water purifiers are widely applied as a terminal treatment device to produce drinking water with high quality. However, concerns are raised regarding low efficiency in eliminating emerging organic pollutants. To enhance our understanding of the reliability and potential risks of water purifiers, the removal of trihalomethanes, antibiotics, and antibiotic resistance genes (ARGs) in four public water purifiers was investigated. In the four public water purifiers in October and November, the removal efficiencies of trichloromethane (TCM) and bromodichloromethane (BDCM) were 15%-69% (averagely 37%) and 6%-44% (averagely 23%). The levels of TCM and BDCM were lowered by all water purifiers in October and November, but accelerated in effluent compared to the influent in one public water purifier in December. The removal efficiencies of twelve antibiotics greatly varied with species and time. Out of twelve sampling cases, the removal efficiencies of total antibiotics were 25%-75% in ten cases. In the other two cases, very low removal efficiency (6%) or higher levels of antibiotics present in effluent compared to the influent were observed. Two public water purifiers effectively remove ARGs from water, with log removal rates of 0.45 log-3.89 log. However, in the other two public water purifiers, the ARG abundance accidently increased in the effluents. Overall, public water purifiers were more effective in removing antibiotics and ARGs compared to household water purifiers, but less or equally effective in removing trihalomethanes. Both public and household water purifiers could be contaminated and release the accumulated micro-pollutants or biofilm-related pollutants into effluent. The production frequency and standing time of water within water purifiers can impact the internal contamination and purification efficacy.


Assuntos
Água Potável , Poluentes Químicos da Água , Antibacterianos/farmacologia , Antibacterianos/análise , Reprodutibilidade dos Testes , Resistência Microbiana a Medicamentos/genética , Poluentes Químicos da Água/análise , Trialometanos , Genes Bacterianos
2.
Chemosphere ; 308(Pt 1): 136171, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36037959

RESUMO

Algal organic matter (AOM) has become an important precursor of disinfection byproducts (DBPs) in multiple drinking water sources. In this study, the formation of DBPs during chlorination and chloramination of AOMs from four algal species (Microcystis aeruginosa, Chlorella vulgaris, Scenedesmus obliquus, and Cyclotella sp.) under different conditions (disinfectant doses 4.0-8.0 mg/L as Cl2, pH 6.0-8.0, and bromide 0-1.0 mg/L) were simultaneously investigated. Some common and specific characteristics of DBP formation have also been identified. The yields of total DBPs from the four AOMs were 3.28 × 102-6.00 × 102 and 1.97 × 102-3.70 × 102 nmol/mg C during chlorination and chloramination, respectively. The proportions of haloacetic acids (HAAs) in total DBPs were approximately ≥50%. Increasing disinfectant doses or pH only enhanced the yields of trihalomethanes (THMs) during chlorination but enhanced the yields of THMs, HAAs and dihaloacetonitriles (DHANs) during chloramination. Increasing bromide concentrations enhanced THM yields but decreased HAA yields during chlorination and chloramination, in addition to the shift from chlorinated DBPs to brominated DBPs. The DHAN yields of the four AOMs slightly decreased with bromide levels during chlorination, whereas different AOMs showed different trends with bromide levels during chloramination. During chlorination, C. vulgaris and S. obliquus AOMs generated higher THM and DHAN yields (at 4.0-5.0 mg/L as Cl2) than the other AOMs. During chloramination, M. aeruginosa AOM generated higher THM and HAA yields than the other AOMs (at 0.1 mg/L bromide). Cyclotella sp. AOM had the highest THM-bromine substitution factors during chlorination and the highest DHAN-bromine substitution factors during both chlorination and chloramination (at 0.1 mg/L bromide).


Assuntos
Chlorella vulgaris , Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Brometos , Bromo , Cloro , Desinfecção , Halogenação , Trialometanos/análise , Poluentes Químicos da Água/análise
3.
Water Res ; 190: 116762, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33387948

RESUMO

Home water purification systems (HWPSs) are utilized worldwide to obtain clean drinking water. However, the reliability of HWPSs in providing safe water is unknown or not well-proven. In this study, the occurrences of antibiotics and antibiotic resistance genes (ARGs) in tap water, effluents, and filters of HWPSs were investigated in twenty-six houses and one laboratory. The levels of antibiotics and ARGs were between less than the limit of detection (LOD) and 7.9 ng/L and between less than LOD and 3.45 × 105 copies/L, respectively, in tap water. HWPSs with fresh filters had a high efficiency in removing antibiotics and ARGs, with removal rates of 91-92% and 0.46-2.43 log, respectively. However, after long-term operation (e.g., more than three months), some HWPSs had low removal rates of antibiotics and ARGs (3-79% and 0.03-0.15 log, respectively) and some HWPSs released antibiotics and ARGs into the effluents leading to higher levels of antibiotics and ARGs in the effluents than those in the influents. Biofilms were observed on many filters of the investigated HWPSs. ARGs were detected on the filters with relative abundances (the ratio of the abundance of ARGs to the abundance of 16S rRNA) of 2.56 × 10-8-2.89 × 10-2. High-throughput sequencing analysis showed that Proteobacteria, Acidobacteria, Chloroflexi, and Bacteroidetes were the dominant phyla, and Alphaproteobacteria and Gammaproteobacteria were the dominant classes. The abundances of Cyanobacteria, Patescibacteria, Bacteroidetes, and Proteobacteria were significantly positively correlated with the abundances of ARGs. Microbial growth and enrichment commonly observed in HWPSs can accelerate the exposure risk posed by antibiotics and ARGs to the consumers of water from these appliances.


Assuntos
Antibacterianos , Purificação da Água , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...