Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1349064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510444

RESUMO

N-Acetylglucosamine (GlcNAc), a fundamental amino sugar moiety, is essential for protein glycosylation, glycolipid, GPI-anchor protein, and cell wall components. Uridine diphosphate-GlcNAc (UDP-GlcNAc), an active form of GlcNAc, is synthesized through the hexosamine biosynthesis pathway (HBP). Although HBP is highly conserved across organisms, the enzymes involved perform subtly distinct functions among microbes, mammals, and plants. A complete block of HBP normally causes lethality in any life form, reflecting the pivotal role of HBP in the normal growth and development of organisms. Although HBP is mainly composed of four biochemical reactions, HBP is exquisitely regulated to maintain the homeostasis of UDP-GlcNAc content. As HBP utilizes substrates including fructose-6-P, glutamine, acetyl-CoA, and UTP, endogenous nutrient/energy metabolites may be integrated to better suit internal growth and development, and external environmental stimuli. Although the genes encoding HBP enzymes are well characterized in microbes and mammals, they were less understood in higher plants in the past. As the HBP-related genes/enzymes have largely been characterized in higher plants in recent years, in this review we update the latest advances in the functions of the HBP-related genes in higher plants. In addition, HBP's salvage pathway and GlcNAc-mediated two major co- or post-translational modifications, N-glycosylation and O-GlcNAcylation, are also included in this review. Further knowledge on the function of HBP and its product conjugates, and the mechanisms underlying their response to deleterious environments might provide an alternative strategy for agricultural biofortification in the future.

2.
Environ Sci Pollut Res Int ; 31(5): 7556-7568, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38165546

RESUMO

Indoor air pollution is a global problem and one of the main stress factors that has negative effects on plant and human health. 3-methyl-1-butanol (3MB), an indoor air pollutant, is a microbial volatile organic compound (mVOC) commonly found in damp indoor dwellings. In this study, we reported that 1 mg/L of 3MB can elicit a significant reduction in the stomatal aperture ratio in Arabidopsis and tobacco. Our results also showed that 3MB enhances the reactive oxygen species (ROS) production in guard cells of wild-type Arabidopsis after 24 h exposure. Further investigation of 24 h 3MB fumigation of rbohD, the1-1, mkk1, mkk3, and nced3 mutants revealed that ROS production, cell wall integrity, MAPK kinases cascade, and phytohormone abscisic acid are all involved in the process of 3MB-induced stomatal. Our findings proposed a mechanism by which 3MB regulates stomatal closure in Arabidopsis. Understanding the mechanisms by which microbial indoor air pollutant induces stomatal closure is critical for modulating the intake of harmful gases from indoor environments into leaves. Investigations into how stomata respond to the indoor mVOC 3MB will shed light on the plant's "self-defense" system responding to indoor air pollution.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pentanóis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estômatos de Plantas , Transdução de Sinais , Ácido Abscísico/metabolismo
3.
Front Plant Sci ; 13: 903272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747876

RESUMO

N-acetylglucosamine (GlcNAc) is the fundamental amino sugar moiety that is essential for protein glycosylation. UDP-GlcNAc, an active form of GlcNAc, is synthesized through the hexosamine biosynthetic pathway (HBP). Arabidopsis N-acetylglucosamine-1-P uridylyltransferases (GlcNAc1pUTs), encoded by GlcNA.UTs, catalyze the last step in the HBP pathway, but their biochemical and molecular functions are less clear. In this study, the GlcNA.UT1 expression was knocked down by the double-stranded RNA interference (dsRNAi) in the glcna.ut2 null mutant background. The RNAi transgenic plants, which are referred to as iU1, displayed the reduced UDP-GlcNAc biosynthesis, altered protein N-glycosylation and induced an unfolded protein response under salt-stressed conditions. Moreover, the iU1 transgenic plants displayed sterility and salt hypersensitivity, including delay of both seed germination and early seedling establishment, which is associated with the induction of ABA biosynthesis and signaling. These salt hypersensitive phenotypes can be rescued by exogenous fluridone, an inhibitor of ABA biosynthesis, and by introducing an ABA-deficient mutant allele nced3 into iU1 transgenic plants. Transcriptomic analyses further supported the upregulated genes that were involved in ABA biosynthesis and signaling networks, and response to salt stress in iU1 plants. Collectively, these data indicated that GlcNAc1pUTs are essential for UDP-GlcNAc biosynthesis, protein N-glycosylation, fertility, and the response of plants to salt stress through ABA signaling pathways during seed germination and early seedling development.

4.
Plant Cell Physiol ; 63(2): 217-233, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34752612

RESUMO

Plant chloroplast RNA splicing and ribosome maturation (CRM)-domain-containing proteins are capable of binding RNA to facilitate the splicing of group I or II introns in chloroplasts, but their functions in mitochondria are less clear. In the present study, Arabidopsis thaliana CFM6, a protein with a single CRM domain, was expressed in most plant tissues, particularly in flower tissues, and restricted to mitochondria. Mutation of CFM6 causes severe growth defects, including stunted growth, curled leaves, delayed embryogenesis and pollen development. CFM6 functions specifically in the splicing of group II intron 4 of nad5, which encodes a subunit of mitochondrial complex I, as evidenced by the loss of nad5 intron 4 splicing and high accumulation of its pretranscripts in cfm6 mutants. The phenotypic and splicing defects of cfm6 were rescued in transgenic plants overexpressing 35S::CFM6-YFP. Splicing failure in cfm6 also led to the loss of complex I activity and to its improper assembly. Moreover, dysfunction of complex I induced the expression of proteins or genes involved in alternative respiratory pathways in cfm6. Collectively, CFM6, a previously uncharacterized CRM domain-containing protein, is specifically involved in the cis-splicing of nad5 intron 4 and plays a pivotal role in mitochondrial complex I biogenesis and normal plant growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Íntrons/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Splicing de RNA/genética
5.
Plant Physiol ; 185(3): 1039-1058, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793900

RESUMO

Although the nucleolus is involved in ribosome biogenesis, the functions of numerous nucleolus-localized proteins remain unclear. In this study, we genetically isolated Arabidopsis thaliana salt hypersensitive mutant 1 (sahy1), which exhibits slow growth, short roots, pointed leaves, and sterility. SAHY1 encodes an uncharacterized protein that is predominantly expressed in root tips, early developing seeds, and mature pollen grains and is mainly restricted to the nucleolus. Dysfunction of SAHY1 primarily causes the accumulation of 32S, 18S-A3, and 27SB pre-rRNA intermediates. Coimmunoprecipitation experiments further revealed the interaction of SAHY1 with ribosome proteins and ribosome biogenesis factors. Moreover, sahy1 mutants are less sensitive to protein translation inhibitors and show altered expression of structural constituents of ribosomal genes and ribosome subunit profiles, reflecting the involvement of SAHY1 in ribosome composition and ribosome biogenesis. Analyses of ploidy, S-phase cell cycle progression, and auxin transport and signaling indicated the impairment of mitotic activity, translation of auxin transport carrier proteins, and expression of the auxin-responsive marker DR5::GFP in the root tips or embryos of sahy1 plants. Collectively, these data demonstrate that SAHY1, a nucleolar protein involved in ribosome biogenesis, plays critical roles in normal plant growth in association with auxin transport and signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Precursores de RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Precursores de RNA/genética , Proteínas Ribossômicas/genética , Ribossomos/genética
6.
Rice (N Y) ; 11(1): 50, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30203325

RESUMO

BACKGROUND: Many transcription factors (TFs), such as those in the basic helix-loop-helix (bHLH) family, are important for regulating plant growth and plant responses to abiotic stress. The expression of OsbHLH035 is induced by drought and salinity. However, its functional role in rice growth, development, and the salt response is still unknown. RESULTS: The bHLH TF OsbHLH035 is a salt-induced gene that is primarily expressed in germinating seeds and seedlings. Stable expression of GFP-fused OsbHLH035 in rice transgenic plants revealed that this protein is predominantly localized to the nucleus. Osbhlh035 mutants show delayed seed germination, particularly under salt-stress conditions. In parallel, abscisic acid (ABA) contents are over-accumulated, and the expression of the ABA biosynthetic genes OsABA2 and OsAAO3 is upregulated; furthermore, compared with that in wild-type (WT) seedlings, the salt-induced expression of OsABA8ox1, an ABA catabolic gene, in germinating Osbhlh035 mutant seeds is downregulated. Moreover, Osbhlh035 mutant seedlings are unable to recover from salt-stress treatment. Consistently, sodium is over-accumulated in aerial tissues but slightly reduced in terrestrial tissues from Osbhlh035 seedlings after salt treatment. Additionally, the expression of the sodium transporters OsHKT1;3 and 1;5 is reduced in Osbhlh035 aerial and terrestrial tissues, respectively. Furthermore, genetic complementation can restore both the delayed seed germination and the impaired recovery of salt-treated Osbhlh035 seedlings to normal growth. CONCLUSION: OsbHLH035 mediates seed germination and seedling recovery after salt stress relief through the ABA-dependent and ABA-independent activation of OsHKT pathways, respectively.

7.
BMC Plant Biol ; 18(1): 40, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490615

RESUMO

BACKGROUND: Although the nucleolus involves two major functions: pre-rRNA processing and ribosome biogenesis/assembly, increasing evidence indicates that it also plays important roles in response to abiotic stress. However, the possible regulatory mechanisms underlying the nucleolar proteins responsive to abiotic stress are largely unknown. High salinity is one of the major abiotic stresses, which hinders plant growth and productivity. Here, genetic screening approach was used to identify a salt hypersensitive mutant 9 (sahy9) mutant, also known as apum23, in Arabidopsis thaliana. Functional characterization of SAHY9/APUM23 through analyses of gene/protein expression profiles and metabolites was performed to decipher the possible regulatory mechanisms of the nucleolar protein SAHY9/APUM23 in response to salt stress. RESULTS: Seedlings of the sahy9/apum23 mutant displayed postgermination developmental arrest and then became bleached after prolonged culture under various salt stresses. Transcriptomic and proteomic analyses of salt-treated sahy9/apum23 and wild-type seedlings revealed differential expression of genes/proteins that have similar functional categories of biological processes, primarily those involved in cellular and metabolic processes as well as abiotic and biotic stress responses. However, the consistency of differential gene expression at both the transcript and protein levels was low (~ 12%), which suggests the involvement of posttranscriptional processing during the salt response. Furthermore, the altered expression of genes and proteins mediated by SAHY9/APUM23 regarding salt sensitivity involves abscisic acid (ABA) biosynthesis and signaling, abiotic stress responses, and ribosome biogenesis-related genes. Importantly, NCED3, ABI2, PP2CA, and major ABA-responsive marker genes, such as RD20 and RD29B, were down-regulated at both the transcript and protein levels in conjunction with lower contents of ABA and changes in the expression of a subset of LEA proteins in sahy9/apum23 mutants under salt stress. Moreover, the salt hypersensitivity of the sahy9/apum23 mutant was largely rescued by the exogenous application of ABA during salt stress. CONCLUSION: Our results revealed that SAHY9/APUM23 regulated the expression of ribosome biogenesis-related genes and proteins, which further affected the ribosome composition and abundance, and potential posttranscriptional regulation. The salt hypersensitivity of sahy9/apum23 is associated with the ABA-mediated signaling pathway and the downstream stress-responsive network of this pathway.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteômica/métodos , Proteínas de Ligação a RNA/genética , Transdução de Sinais/efeitos dos fármacos
8.
Plant Mol Biol ; 94(4-5): 531-548, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28631168

RESUMO

KEY MESSAGE: The homologous genes OsbHLH068 and AtbHLH112 have partially redundant functions in the regulation of the salt stress response but opposite functions to control flowering in Arabidopsis. The transcription factor (TF) basic/Helix-Loop-Helix (bHLH) is important for plant growth, development, and stress responses. OsbHLH068, which is a homologous gene of AtbHLH112 that is up-regulated under drought and salt stresses, as indicated by previous microarray data analysis. However, the intrinsic function of OsbHLH068 remains unknown. In the present study, we characterized the function and compared the role of OsbHLH068 with that of its homolog, AtbHLH112. Histochemical GUS staining indicated that OsbHLH068 and AtbHLH112 share a similar expression pattern in transgenic Arabidopsis during the juvenile-to-adult phase transition. Heterologous overexpression of OsbHLH068 in Arabidopsis delays seed germination, decreases salt-induced H2O2 accumulation, and promotes root elongation, whereas AtbHLH112 knock-out mutant displays an opposite phenotype. Both OsbHLH068-overexpressing transgenic Arabidopsis seedlings and the Atbhlh112 mutant display a late-flowering phenotype. Moreover, the expression of OsbHLH068-GFP driven by an AtbHLH112 promoter can compensate for the germination deficiency in the Atbhlh112 mutant, but the delayed-flowering phenotype tends to be more severe. Further analysis by microarray and qPCR indicated that the expression of FT is down-regulated in both OsbHLH068-overexpressing Arabidopsis plants and Atbhlh112 mutant plants, whereas SOC1 but not FT is highly expressed in AtbHLH112-overexpressing Arabidopsis plants. A comparative transcriptomic analysis also showed that several stress-responsive genes, such as AtERF15 and AtPUB23, were affected in both OsbHLH068- and AtbHLH112-overexpressing transgenic Arabidopsis plants. Thus, we propose that OsbHLH068 and AtbHLH112 share partially redundant functions in the regulation of abiotic stress responses but have opposite functions to control flowering in Arabidopsis, presumably due to the evolutionary functional divergence of homolog-encoded proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Cloreto de Sódio/toxicidade , Estresse Fisiológico/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
9.
Plant Sci ; 236: 260-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26025539

RESUMO

Although abscisic acid (ABA) and gibberellins (GAs) play pivotal roles in many physiological processes in plants, their interaction in the control of leaf growth remains elusive. In this study, genetic analyses of ABA and GA interplay in leaf growth were performed in Arabidopsis thaliana. The results indicate that for the ABA and GA interaction, leaf growth of both the aba2/ga20ox1 and aba2/GA20ox1 plants, which were derived from the crosses of aba2×ga20ox1 and aba2×GA20ox1 overexpressor, respectively, exhibits partially additive effects but is similar to the aba2 mutant. Consistently, the transcriptome analysis suggests that a substantial proportion (45-65%) of the gene expression profile of aba2/ga20ox1 and aba2/GA20ox1 plants overlap and share a pattern similar to the aba2 mutant. Thus, these data suggest that ABA deficiency dominates leaf growth regardless of GA levels. Moreover, the gene ontology (GO) analysis indicates gene enrichment in the categories of hormone response, developmental and metabolic processes, and cell wall organization in these three genotypes. Leaf developmental genes are also involved in the ABA-GA interaction. Collectively, these data support that the genetic relationship of ABA and GA interaction involves multiple coordinated pathways rather than a simple linear pathway for the regulation of leaf growth.


Assuntos
Ácido Abscísico/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/genética , Ácido Abscísico/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Giberelinas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
10.
Plant Cell Physiol ; 55(11): 1977-93, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25231969

RESUMO

Although N-acetylglucosamine-1-P uridylyltransferase (GlcNAc1pUT) that catalyzes the final step of the hexosamine biosynthetic pathway and is conserved among, organisms, produces UDP-N-acetylglucosamine (UDP-GlcNAc), an essential sugar moiety involved in protein glycosylation and structural polymers, its biological function in plants remains unknown. In this study, two GlcNA.UT genes were characterized in Arabidopsis thaliana. The single mutants glcna.ut1 and glcna.ut2 revealed no obvious phenotype, but their homozygous double mutant was lethal, reflecting the functional redundancy of these genes in being essential for plant growth. Mutant plants, GlcNA.UT1/glcna.ut1 glcna.ut2/ glcna.ut2, obtained from an F2-segregating population following reciprocal crosses of glcna.ut1 with glcna.ut2, displayed shorter siliques and fewer seed sets combined with impaired pollen viability and unfertilized ovules. Genetic analyses further demonstrated that the progeny of the GlcNA.UT1/glcna.ut1 glcna.ut2/glcna.ut2 mutant plants, but not those of the glcna.ut1/glcna.ut1 GlcNA.UT2/glcna.ut2 mutant plants, suffer from the aberrant transmission of (glcna.ut1 glcna.ut2) gametes. In parallel, cell biology analyses revealed a substantial defect in male gametophytes appearing during the late vacuolated or pollen mitosis I stages and that the female gametophyte is arrested during the uninucleate embryo sac stage in GlcNA.UT1/glcna.ut1 glcna.ut2/glcna.ut2 mutant plants. Nevertheless, although the glcna.ut1/glcna.ut1 GlcNA.UT2/glcna.ut2 mutant plants exhibited a normal transmission of (glcna.ut1 glcna.ut2) gametes and gametophytic development, the development of numerous embryos was arrested during the early globular stage within the embryo sacs. Collectively, despite having overlapping functions, the GlcNA.UT genes play an indispensable role in the unique mediation of gametogenesis and embryogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Nucleotidiltransferases/metabolismo , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Homozigoto , Mutação , Nucleotidiltransferases/genética , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Sementes/genética , Sementes/metabolismo
11.
Plant J ; 77(1): 119-35, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24176057

RESUMO

The Arabidopsis thaliana T-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of AtRH57. rh57-1 and rh57-3 displayed severely impaired seedling growth when grown in Glc concentrations higher than 3%. The gene, AtRH57 (At3g09720), was expressed in all Arabidopsis organs and its transcript was significantly induced by ABA, high Glc and salt. The new AtRH57 belongs to class II DEAD-box RNA helicase gene family. Transient expression of AtRH57-EGFP (enhanced green fluorescent protein) in onion cells indicated that AtRH57 was localized in the nucleus and nucleolus. Purified AtRH57-His protein was shown to unwind double-stranded RNA independent of ATP in vitro. The ABA biosynthesis inhibitor fluridone profoundly redeemed seedling growth arrest mediated by sugar. rh57-1 showed increased ABA levels when exposed to high Glc. Quantitative real time polymerase chain reaction analysis showed that AtRH57 acts in a signaling network downstream of HXK1. A feedback inhibition of ABA accumulation mediated by AtRH57 exists within the sugar-mediated ABA signaling. AtRH57 mutation and high Glc conditions additively caused a severe defect in small ribosomal subunit formation. The accumulation of abnormal pre-rRNA and resistance to protein synthesis-related antibiotics were observed in rh57 mutants and in the wild-type Col-0 under high Glc conditions. These results suggested that AtRH57 plays an important role in rRNA biogenesis in Arabidopsis and participates in response to sugar involving Glc- and ABA signaling during germination and seedling growth.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/enzimologia , RNA Helicases DEAD-box/genética , Reguladores de Crescimento de Plantas/metabolismo , RNA Ribossômico/metabolismo , Sementes/enzimologia , Motivos de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Helicases DEAD-box/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Glucose/metabolismo , Modelos Biológicos , Mutagênese Insercional , Fenótipo , Plantas Geneticamente Modificadas , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/genética , Ribossomos/genética , Ribossomos/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais
12.
Plant Physiol Biochem ; 51: 63-73, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22153241

RESUMO

ABSCISIC ACID DEFICIENT2 (ABA2) encodes a short-chain dehydrogenase/reductase1 (SDR1) that catalyzes the multi-step conversion of xanthoxin to abscisic aldehyde during abscisic acid (ABA) biosynthesis in Arabidopsis thaliana. In this study, AtSDR2 and AtSDR3, the two closest homologs to AtABA2, were investigated for their potential role in ABA biosynthesis. AtSDR2 showed undetectable transcription in plants grown under normal conditions or under stress. AtSDR3 and AtABA2 have different spatial and temporal expression patterns. Complementation testing demonstrated that the pABA2::SDR3 transgene failed to complement the aba2 mutant phenotype, and that transgenic plants showed the same levels of ABA as the aba2 mutants. These data suggest that AtSDR3 confers no functional redundancy to AtABA2 in ABA biosynthesis. Interestingly, microarray data derived from Genevestigator suggested that AtSDR3 might have a function that is related to plant defense. Pseudomonas syringae pv. tomato (Pst) DC3000 infection and systemic acquired resistance (SAR) activator application further demonstrated that AtSDR3 plays an important role in plant defense responses at least partially through the regulation of AtPR-1 gene expression.


Assuntos
Ácido Abscísico/biossíntese , Oxirredutases do Álcool/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Ácido Abscísico/genética , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Dados de Sequência Molecular , Imunidade Vegetal , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Alinhamento de Sequência , Transgenes
13.
Plant Cell Physiol ; 52(10): 1806-21, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21865303

RESUMO

Although exogenous ABA-regulated heterophylly has been well documented in multiple plant species, the effect of endogenous ABA and its molecular mechanism remain uncharacterized. In the present study, the effects of endogenous ABA on heterophyllous switching were investigated in two different lily varieties, Lilium formosanum and Lilium oriental hybrid 'Casa Blanca'. Seedlings of L. formosanum, which have scale-leaf-type growth, displayed low levels of both 9-cis-epoxycarotenoid dioxygenase 3 (LfNCED3) transcripts and ABA, whereas seedlings of L. oriental hybrid 'Casa Blanca', which have scale-type growth, displayed high levels of both LoNCED3 transcripts and ABA. Sucrose induced endogenous ABA production in cultured lilies; low ABA induction shows scale-leaf-type growth, whereas scale-type growth becomes predominant when ABA levels are high. Heterologous expression of either LfNCED3 or LoNCED3 was found to complement the Arabidopsis Atnced3 mutant. Interestingly, the expression patterns of LfNCED3 and LoNCED3 in transgenic Arabidopsis plants are distinguishable. Further promoter analysis revealed that a putative E2F-like element in the LfNCED3 promoter, but not in the LoNCED3 promoter, plays a negative role in controlling its activity. Collectively, our results demonstrate that NCED3 plays a key role in ABA-mediated heterophylly in lilies.


Assuntos
Ácido Abscísico/farmacologia , Dioxigenases/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lilium/enzimologia , Lilium/genética , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Ácido Abscísico/biossíntese , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Sequência de Bases , Clonagem Molecular , Dioxigenases/química , Dioxigenases/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genes de Plantas/genética , Lilium/efeitos dos fármacos , Modelos Biológicos , Dados de Sequência Molecular , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Fenótipo , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Sacarose/farmacologia
14.
Plant Mol Biol ; 71(1-2): 61-80, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19513806

RESUMO

Although abscisic acid (ABA) and ethylene have antagonistic functions in the control of plant growth and development, including seed germination and early seedling development, it remains unknown whether a convergent point exists between these two signaling pathways or whether they operate in parallel in Arabidopsis thaliana. To elucidate this issue, four ethylene mutants, ctr1, ein2, ein3, and ein6, were crossed with aba2 (also known as gin1-3) to generate double mutants. Genetic epistasis analysis revealed that all of the resulting double mutants displayed aba2 mutant phenotypes with a small plant size and wiltiness when grown in soil or on agar plates. Further ethylene sensitivity or triple response analyses demonstrated that these double mutants also retained the ctr1 or ein mutant phenotypes, showing ethylene constitutive triple and insensitive responses, respectively. Our current data therefore demonstrate that ABA and ethylene act in parallel, at least in primary signal transduction pathways. Moreover, by microarray analysis we found that an ACC oxidase (ACO) was significantly upregulated in the aba2 mutant, whereas the 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) gene in ein2 was upregulated, and both the ABSCISIC ACID INSENSITIVE1 (ABI1) and cytochrome P450, family 707, subfamily A, polypeptide 2 (CYP707A2) genes in etr1-1 were downregulated. These data further suggest that ABA and ethylene may control the hormonal biosynthesis, catabolism, or signaling of each other to enhance their antagonistic effects upon seed germination and early seedling growth.


Assuntos
Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Etilenos/metabolismo , Transdução de Sinais/fisiologia , Ácido Abscísico/antagonistas & inibidores , Arabidopsis/genética , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Epistasia Genética , Etilenos/antagonistas & inibidores , Germinação , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Plântula/genética , Plântula/crescimento & desenvolvimento
15.
Plant Physiol ; 143(2): 745-58, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17189333

RESUMO

Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Expressão Gênica , Sementes/metabolismo , Ácido Abscísico/biossíntese , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Metabolismo dos Carboidratos/fisiologia , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação , Plantas Geneticamente Modificadas , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia , Regulação para Cima
16.
Science ; 300(5617): 332-6, 2003 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-12690200

RESUMO

Glucose modulates many vital processes in photosynthetic plants. Analyses of Arabidopsis glucose insensitive2 (gin2) mutants define the physiological functions of a specific hexokinase (HXK1) in the plant glucose-signaling network. HXK1 coordinates intrinsic signals with extrinsic light intensity. HXK1 mutants lacking catalytic activity still support various signaling functions in gene expression, cell proliferation, root and inflorescence growth, and leaf expansion and senescence, thus demonstrating the uncoupling of glucose signaling from glucose metabolism. The gin2 mutants are also insensitive to auxin and hypersensitive to cytokinin. Plants use HXK as a glucose sensor to interrelate nutrient, light, and hormone signaling networks for controlling growth and development in response to the changing environment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucose/metabolismo , Hexoquinase/metabolismo , Luz , Transdução de Sinais , Aminoácidos Cíclicos/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Catálise , Divisão Celular , Citocininas/metabolismo , Citocininas/farmacologia , Etilenos/metabolismo , Flores/crescimento & desenvolvimento , Expressão Gênica , Genes de Plantas , Hexoquinase/genética , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Mutagênese , Fosforilação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
17.
Plant Cell ; 14(11): 2723-43, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12417697

RESUMO

Glc has hormone-like functions and controls many vital processes through mostly unknown mechanisms in plants. We report here on the molecular cloning of GLUCOSE INSENSITIVE1 (GIN1) and ABSCISIC ACID DEFICIENT2 (ABA2) which encodes a unique Arabidopsis short-chain dehydrogenase/reductase (SDR1) that functions as a molecular link between nutrient signaling and plant hormone biosynthesis. SDR1 is related to SDR superfamily members involved in retinoid and steroid hormone biosynthesis in mammals and sex determination in maize. Glc antagonizes ethylene signaling by activating ABA2/GIN1 and other abscisic acid (ABA) biosynthesis and signaling genes, which requires Glc and ABA synergistically. Analyses of aba2/gin1 null mutants define dual functions of endogenous ABA in inhibiting the postgermination developmental switch modulated by distinct Glc and osmotic signals and in promoting organ and body size and fertility in the absence of severe stress. SDR1 is sufficient for the multistep conversion of plastid- and carotenoid-derived xanthoxin to abscisic aldehyde in the cytosol. The surprisingly restricted spatial and temporal expression of SDR1 suggests the dynamic mobilization of ABA precursors and/or ABA.


Assuntos
Ácido Abscísico/biossíntese , Oxirredutases do Álcool/genética , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Glucose/metabolismo , Oxirredutases/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/fisiologia , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Etilenos/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Glucose/farmacologia , Dados de Sequência Molecular , Mutação , Pressão Osmótica/efeitos dos fármacos , Filogenia , Reguladores de Crescimento de Plantas/biossíntese , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...