Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311764, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506607

RESUMO

The development of novel method for drug-resistant bacteria detection is imperative. A simultaneous dual-gene Test of methicillin-resistant Staphylococcus aureus (MRSA) is developed using an Argonaute-centered portable biosensor (STAR). This is the first report concerning Argonaute-based pathogenic bacteria detection. Simply, the species-specific mecA and nuc gene are isothermally amplified using loop-mediated isothermal amplification (LAMP) technique, followed by Argonaute-based detection enabled by its programmable, guided, sequence-specific recognition and cleavage. With the strategy, the targeted nucleic acid signals gene are dexterously converted into fluorescent signals. STAR is capable of detecting the nuc gene and mecA gene simultaneously in a single reaction. The limit of detection is 10 CFU/mL with a dynamic range from 10 to 107 CFU/mL. The sample-to-result time is <65 min. This method is successfully adapted to detect clinical samples, contaminated foods, and MRSA-infected animals. This work broadens the reach of Argonaute-based biosensing and presents a novel bacterial point-of-need (PON) detection platform.

2.
Biosens Bioelectron ; 215: 114559, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917610

RESUMO

Various non-nucleic acid targets (ions, small molecules, polysaccharides, peptides/proteins/enzymes, cells, transcription factors) are important biomarkers. They play important roles in environmental protection, food safety and medical diagnosis. Therefore, it is necessary to detect non-nucleic acid targets from various samples before the situation deteriorates. Derived from prokaryotic immune systems, CRISPR/Cas tools have exhibited great promise in the field of biosensing, in addition to the well-known gene-editing function. However, most reported CRISPR/Cas-based biosensors are for nucleic acid detection and the application of non-nucleic acid targets is still in its infancy. To fully explore the potential of CRISPR/Cas-based biosensing systems, it is of great significance to summarize the strategies and prospects of CRISPR/Cas toolboxes in non-nucleic acid targets recognition. In this review, we introduced CRISPR/Cas systems and their characteristics in the field of detection. The progress of detecting six non-nucleic acid targets was outlined and reviewed based on CRISPR/Cas systems coupled with biotransduction elements, including aptamers, DNAzymes, riboswitches, enzymatic reactions, transcription factors, antigen-antibody interactions, allosteric probes, in vitro transcription processes, steric hindrance effectors, etc. The development challenges and prospects in this field were also put forward. As such, this comprehensive review would provide valuable information for the expansion of the powerful CRISPR/Cas toolboxes into multiple detection fields.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Edição de Genes , Fatores de Transcrição/genética
3.
Appl Microbiol Biotechnol ; 105(21-22): 8033-8058, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34625820

RESUMO

Fluorinated compounds are widely used in the fields of molecular imaging, pharmaceuticals, and materials. Fluorinated natural products in nature are rare, and the introduction of fluorine atoms into organic compound molecules can give these compounds new functions and make them have better performance. Therefore, the synthesis of fluorides has attracted more and more attention from biologists and chemists. Even so, achieving selective fluorination is still a huge challenge under mild conditions. In this review, the research progress of enzymatic synthesis of fluorinated compounds is summarized since 2015, including cytochrome P450 enzymes, aldolases, fluoroacetyl coenzyme A thioesterases, lipases, transaminases, reductive aminases, purine nucleoside phosphorylases, polyketide synthases, fluoroacetate dehalogenases, tyrosine phenol-lyases, glycosidases, fluorinases, and multienzyme system. Of all enzyme-catalyzed synthesis methods, the direct formation of the C-F bond by fluorinase is the most effective and promising method. The structure and catalytic mechanism of fluorinase are introduced to understand fluorobiochemistry. Furthermore, the distribution, applications, and future development trends of fluorinated compounds are also outlined. Hopefully, this review will help researchers to understand the significance of enzymatic methods for the synthesis of fluorinated compounds and find or create excellent fluoride synthase in future research.Key points• Fluorinated compounds are distributed in plants and microorganisms, and are used in imaging, medicine, materials science.• Enzyme catalysis is essential for the synthesis of fluorinated compounds.• The loop structure of fluorinase is the key to forming the C-F bond.


Assuntos
Flúor , Halogenação , Aldeído Liases , Catálise , Transaminases
4.
Enzyme Microb Technol ; 150: 109881, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489034

RESUMO

Natural fluorinated products are rare and attract great attention. The de novo fluorometabolites biosynthetic pathway in microbes has been studied. It is revealed that the carbon-fluorine (C-F) bond is formed by an exotic enzyme called fluorinase (FLA) when using fluorine ions and S-adenosyl-l-methionine (SAM) as substrates. However, the resource of the precursor SAM is still elusive. To solve this, a novel methionine adenosyltransferase from Streptomyces xinghaiensis (SxMAT) was identified and characterized. We proved that SAM was enzymatically synthesized by SxMAT, an enzyme that mediated the reaction between adenosine triphosphate (ATP) and l-methionine (l-Met) with 99% diastereoisomeric excess (d.e.) and 80% yield. Such high diastereoselectivity had never been reported before. SxMAT was a Co2+-dependent metalloenzyme. The results showed that the metal cobalt ion contributes to the activity and selectivity of SxMAT. Molecular docking was performed to reveal its catalytic mechanism. The optimal temperature and pH were 55 °C and 8.5, respectively. Lastly, a two-step tandem enzymatic reaction using SxMAT and FLA both from S. xinghaiensis to generate 5'-fluoro-deoxyadenosine (5'-FDA) was performed. This implied that SxMAT may be present in this fluorometabolites biosynthetic route. These results suggested that SxMAT could be a useful biocatalyst for the synthesis of optically pure (S)-S-adenosyl-l-methionine, an important nutraceutical. In addition, SxMAT will probably play an important role in the biosynthetic pathway of fluorinated natural products in bacteria.


Assuntos
Metionina Adenosiltransferase , S-Adenosilmetionina , Vias Biossintéticas , Metionina/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Simulação de Acoplamento Molecular , S-Adenosilmetionina/metabolismo , Streptomyces
5.
Drug Discov Today ; 26(6): 1490-1500, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33639248

RESUMO

In recent years, many studies have shown that adenosine has efficacy for treating cancer. More importantly, some adenosine analogs have been successfully marketed to fulfill anticancer purposes. In this review, we summarize the anticancer effects of adenosine and its analogs in clinical trials and preclinical studies, with focus on their anticancer mechanisms. In addition, we link the anticancer activities of adenosine analogs with their structures through structure-activity relationship (SAR) analysis, and highlight additional promising anticancer drug candidates. We hope that this review will be of help in understanding the importance of adenosine and its analogs with anticancer activities and directing future research and development of such compounds.


Assuntos
Adenosina/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Adenosina/análogos & derivados , Adenosina/química , Animais , Antineoplásicos/química , Desenvolvimento de Medicamentos/métodos , Humanos , Relação Estrutura-Atividade
6.
Sheng Wu Gong Cheng Xue Bao ; 36(6): 1249-1256, 2020 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-32597075

RESUMO

Microbial genetics and breeding is a compulsory course for "Bioengineering Excellence Talents Experimental Class" and "Bioengineering International Student Class". However, the traditional teaching model has many deficiencies in terms of content selection, teaching methods and examination forms. At Tianjin University of Science and Technology, to improve the quality and effectiveness of teaching, especially in the field of microbiology, innovative leaders who meet the needs of national and international communities are highly needed. This article describes the reformed teaching content, teaching methods, and curriculum assessment methods of microbial genetics and breeding. With the help of the latest scientific research progress, pre-class preview system, video display, and diversified assessment methods, teaching mode has been innovatively reformed. As such, students not only mastered the relevant professional knowledge of microbial genetics and breeding, but also exercised their subjective initiative, teamwork consciousness, professional foreign language expression level, and cultivated their interest in scientific knowledge related to microbial genetics.


Assuntos
Cruzamento , Currículo , Genética Microbiana , Bioengenharia/educação , Currículo/normas , Genética Microbiana/educação , Genética Microbiana/tendências , Humanos , Estudantes
7.
ChemistryOpen ; 6(4): 534-540, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28794949

RESUMO

d-2-Aminobutyric acid is an unnatural amino acid serving as an important intermediate in pharmaceutical production. Developing a synthetic method that uses cheaper starting materials and produces less by-product is a pressing demand. A tri-enzymatic catalytic system, which is composed of l-threonine ammonia lyase (l-TAL), d-amino acid dehydrogenase (d-AADH), and formate dehydrogenase (FDH), has thus been developed for the synthesis of d-2-aminobutyric acid with high optical purity. In this cascade reaction, the readily available l-threonine serves as the starting material, carbon dioxide and water are the by-products. d-2-Aminobutyric acid was obtained with >90 % yield and >99 % enantioselective excess, even without adding external ammonia, demonstrating that the ammonia from the first reaction can serve as the amino donor for the reductive amination step. This multi-enzymatic system provides an attractive method with high atomic economy for the synthesis of d-α-amino acids from the corresponding l-α-amino acids, which are readily produced by fermentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...