Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chin Med J (Engl) ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252155

RESUMO

BACKGROUND: Delayed platelet engraftment is a common complication after umbilical cord blood transplantation (UCBT), and there is no standard therapy. Avatrombopag (AVA) is a second-generation thrombopoietin (TPO) receptor agonist (TPO-RA) that has shown efficacy in immune thrombocytopenia (ITP). However, few reports have focused on its efficacy in patients diagnosed with thrombocytopenia after allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS: We conducted a retrospective study to evaluate the efficacy of AVA as a first-line TPO-RA in 65 patients after UCBT; these patients were compared with 118 historical controls. Response rates, platelet counts, megakaryocyte counts in bone marrow, bleeding events, adverse events and survival rates were evaluated in this study. Platelet reconstitution differences were compared between different medication groups. Multivariable analysis was used to explore the independent beneficial factors for platelet implantation. RESULTS: Fifty-two patients were given AVA within 30 days post-UCBT, and the treatment was continued for more than 7 days to promote platelet engraftment (AVA group); the other 13 patients were given AVA for secondary failure of platelet recovery (SFPR group). The median time to platelet engraftment was shorter in the AVA group than in the historical control group (32.5 days vs. 38.0 days, Z = 2.095, P = 0.036). Among the 52 patients in the AVA group, 46 achieved an overall response (OR) (88.5%), and the cumulative incidence of OR was 91.9%. Patients treated with AVA only had a greater 60-day cumulative incidence of platelet engraftment than patients treated with recombinant human thrombopoietin (rhTPO) only or rhTPO combined with AVA (95.2% vs. 84.5% vs. 80.6%, P <0.001). Patients suffering from SFPR had a slightly better cumulative incidence of OR (100%, P = 0.104). Patients who initiated AVA treatment within 14 days post-UCBT had a better 60-day cumulative incidence of platelet engraftment than did those who received AVA after 14 days post-UCBT (96.6% vs. 73.9%, P = 0.003). CONCLUSION: In summary, compared with those in the historical control group, our results indicate that AVA could effectively promote platelet engraftment and recovery after UCBT, especially when used in the early period (≤14 days post-UCBT).

2.
Transplant Cell Ther ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111370

RESUMO

Recent evidence has indicated that measurable residual disease (MRD) markedly affects the prognosis of patients with acute leukemia post-transplantation. However, the prognostic relevance of complete remission with incomplete count recovery (CRi) before transplantation has not been extensively explored. In this single-center, longitudinal study, we assessed the outcomes of 466 MRD-negative acute leukemia patients who underwent single-unit unrelated cord blood transplantation (sUCBT), including 117 patients with CRi. We observed that acute myeloid leukemia (AML) patients with CRi had a significantly lower cumulative incidence of both neutrophil (90.8% versus 96.5%) and platelet engraftment (67.2% versus 85.3%) and experienced increased transplant-related mortality (TRM) (100-day TRM: 14.2% versus 5.3%; 1-year TRM: 20.6% versus 11.3%; P = .024 and .063, respectively), mainly due to infection-related deaths, compared to those in complete remission (CR). Multivariate analysis revealed that CRi was an independent adverse predictor of both neutrophil and platelet engraftment and increased 100-day TRM in AML patients. However, CRi status did not affect relapse or reduce 5-year overall survival (OS), leukemia-free survival (LFS), or GVHD-free relapse-free survival (GRFS) in the AML cohort. Conversely, for patients with acute lymphoblastic leukemia (ALL), CRi did not impact engraftment, TRM, relapse or survival after sUCBT. Our findings underscore that CRi status before sUCBT portends poorer engraftment outcomes and a greater TRM in AML patients, although it does not significantly affect the prognosis of ALL patients.

3.
Transplant Cell Ther ; 30(9): 916.e1-916.e12, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971463

RESUMO

Steroid-refractory (SR) acute graft-versus-host disease (aGVHD) is a major cause of mortality after allogeneic hematopoietic stem cell transplantation. We aimed to evaluate the effectiveness and safety of ruxolitinib plus basiliximab for treating SR-aGVHD after unrelated cord blood transplantation (UCBT). Among the 1154 patients with hematological malignancies who underwent UCBT between February 2014 and May 2022, 198 patients with grade II to IV SR-aGVHD were enrolled, 112 of whom were treated with basiliximab alone (basiliximab group) and 86 of whom received basiliximab plus ruxolitinib (combined therapy group). The combined therapy group demonstrated a significantly higher complete response rate (CRR) on day 28 (36.0%) than did the basiliximab group (12.5%, P < .001). SR-aGVHD patients were further stratified into standard-risk and high-risk groups using the refined Minnesota aGVHD risk score. For standard-risk patients, combined therapy significantly improved the CRR (51.1% versus 13.6%, P < .001) and 3-year overall survival (74.5% versus 52.4%, P = .033). However, high-risk patients did not exhibit the same benefits. Compared with basiliximab monotherapy, ruxolitinib plus basiliximab therapy was an effective therapy for patients with standard-risk SR-aGVHD following UCBT. The effectiveness of combined therapy in high-risk patients was not apparent, indicating the need for other treatments.


Assuntos
Basiliximab , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Doença Enxerto-Hospedeiro , Nitrilas , Pirazóis , Pirimidinas , Humanos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Pirazóis/uso terapêutico , Nitrilas/uso terapêutico , Basiliximab/uso terapêutico , Pirimidinas/uso terapêutico , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Criança , Esteroides/uso terapêutico , Pré-Escolar , Doença Aguda , Imunossupressores/uso terapêutico , Resultado do Tratamento , Quimioterapia Combinada
4.
Br J Haematol ; 204(6): 2378-2389, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581290

RESUMO

To explore the impact of letermovir (LET) prophylaxis on cytomegalovirus (CMV) reactivation and resistance in both adult and paediatric umbilical cord blood transplantation (UCBT) patients, we retrospectively compared 43 UCBT patients who received LET as CMV prophylaxis with a historical cohort of 207 UCBT patients without LET usage. LET was administered from Day +1 to Day +100. The 180-day cumulative incidence of CMV reactivation (47.3% vs. 74.4%, p < 0.001) and the proportion of refractory CMV reactivation (15.0% vs. 42.9%, p = 0.016) were significantly lower than those in the control group. However, more frequent late CMV infection (31.0% vs. 4.3%, p = 0.002) and the 180-day cumulative incidence of Epstein-Barr virus (EBV) reactivation (9.3% vs. 3.4%, p = 0.087) were observed in UCBT patients with LET prophylaxis. Meanwhile, older age (>15 years old) and the occurrence of pre-engraftment syndrome were identified as the significant risk factors for CMV reactivation, and in patients at high risk, the incidence of CMV reactivation in the LET group was lower than that in the control group (46.7% vs. 86.5%, p < 0.001), while this decline was less pronounced among patients at low risk (47.8% vs. 62.1%, p = 0.120).


Assuntos
Antivirais , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Infecções por Citomegalovirus , Citomegalovirus , Quinazolinas , Ativação Viral , Humanos , Transplante de Células-Tronco de Sangue do Cordão Umbilical/efeitos adversos , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Masculino , Infecções por Citomegalovirus/prevenção & controle , Infecções por Citomegalovirus/etiologia , Feminino , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/fisiologia , Adulto , Estudos Retrospectivos , Adolescente , Pessoa de Meia-Idade , Criança , Ativação Viral/efeitos dos fármacos , Antivirais/uso terapêutico , Quinazolinas/uso terapêutico , Quinazolinas/farmacologia , Pré-Escolar , Farmacorresistência Viral , Adulto Jovem , Lactente , Idoso , Acetatos
5.
Cancer Med ; 12(24): 22333-22353, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38063246

RESUMO

OBJECTIVE: Hypoxia, which can considerably affect the tumor microenvironment, hinders the use of immunotherapy in bladder cancer (BLCA). Therefore, we aimed to identify reliable hypoxia-related biomarkers to guide clinical immunotherapy in BLCA. METHODS: Using data downloaded from TCGA-BLCA cohort, we determined BLCA subtypes which divide 408 samples into different subtypes. Tumor immune infiltration levels of two clusters were quantified using ssGSEA, MCPcounter, EPIC, ESTIMATE, and TIMER algorithms. Next, we constructed a hypoxia score based on the expression of hypoxia-related genes. The IMvigor210 cohort and SubMap analysis were used to predict immunotherapeutic responses in patients with different hypoxia scores. Hub genes were screened using cytoscape, immunohistochemistry (IHC), and multispectral immunofluorescence were used to detect the spatial distribution of immune markers. RESULTS: Patients with BLCA were categorized into cluster1 (n = 227) and Cluster2 (n = 181). Immune infiltration and expression of immune markers were higher in Cluster1. Immune infiltration was also more obvious in the high-hypoxia score group which related to a better predicted response to immunotherapy. IHC, and multispectral immunofluorescence confirmed the importance of TLR8 in immune infiltration and immune phenotype. CONCLUSIONS: BLCA subtype can evaluate the infiltration of immune cells in the tumor microenvironment of different patients. Hypoxia score in this study could effectively predict immunotherapeutic responses in patients with BLCA. TLR8 may be a potential target for clinical immunotherapy.


Assuntos
Receptor 8 Toll-Like , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/terapia , Hipóxia , Imunoterapia , Microambiente Tumoral , Biomarcadores
6.
J Transl Med ; 21(1): 823, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978379

RESUMO

BACKGROUND: Doxorubicin (DOX)-induced cardiotoxicity (DIC) is a major impediment to its clinical application. It is indispensable to explore alternative treatment molecules or drugs for mitigating DIC. WGX50, an organic extract derived from Zanthoxylum bungeanum Maxim, has anti-inflammatory and antioxidant biological activity, however, its function and mechanism in DIC remain unclear. METHODS: We established DOX-induced cardiotoxicity models both in vitro and in vivo. Echocardiography and histological analyses were used to determine the severity of cardiac injury in mice. The myocardial damage markers cTnT, CK-MB, ANP, BNP, and ferroptosis associated indicators Fe2+, MDA, and GPX4 were measured using ELISA, RT-qPCR, and western blot assays. The morphology of mitochondria was investigated with a transmission electron microscope. The levels of mitochondrial membrane potential, mitochondrial ROS, and lipid ROS were detected using JC-1, MitoSOX™, and C11-BODIPY 581/591 probes. RESULTS: Our findings demonstrate that WGX50 protects DOX-induced cardiotoxicity via restraining mitochondrial ROS and ferroptosis. In vivo, WGX50 effectively relieves doxorubicin-induced cardiac dysfunction, cardiac injury, fibrosis, mitochondrial damage, and redox imbalance. In vitro, WGX50 preserves mitochondrial function by reducing the level of mitochondrial membrane potential and increasing mitochondrial ATP production. Furthermore, WGX50 reduces iron accumulation and mitochondrial ROS, increases GPX4 expression, and regulates lipid metabolism to inhibit DOX-induced ferroptosis. CONCLUSION: Taken together, WGX50 protects DOX-induced cardiotoxicity via mitochondrial ROS and the ferroptosis pathway, which provides novel insights for WGX50 as a promising drug candidate for cardioprotection.


Assuntos
Cardiotoxicidade , Ferroptose , Camundongos , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Espécies Reativas de Oxigênio/metabolismo , Miócitos Cardíacos/patologia , Doxorrubicina/efeitos adversos , Mitocôndrias/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Apoptose
7.
Chin J Nat Med ; 21(11): 842-851, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38035939

RESUMO

Cancer stands as one of the predominant causes of mortality globally, necessitating ongoing efforts to develop innovative therapeutics. Historically, natural products have been foundational in the quest for anticancer agents. Bulbocodin D (BD) and Bulbocodin C (BC), two bibenzyls derived from Pleione bulbocodioides (Franch.) Rolfe, have demonstrated notable in vitro anticancer activity. In human lung cancer A549 cells, the IC50s for BD and BC were 11.63 and 11.71 µmol·L-1, respectively. BD triggered apoptosis, as evidenced by an upsurge in Annexin V-positive cells and elevated protein expression of cleaved-PARP in cancer cells. Furthermore, BD and BC markedly inhibited the migratory and invasive potentials of A549 cells. The altered genes identified through RNA-sequencing analysis were integrated into the CMap dataset, suggesting BD's role as a potential signal transducer and activator of transcription 3 (STAT3) inhibitor. SwissDock and MOE analyses further revealed that both BD and BC exhibited a commendable binding affinity with STAT3. Additionally, a surface plasmon resonance assay confirmed the direct binding affinity between these compounds and STAT3. Notably, treatment with either BD or BC led to a significant reduction in p-STAT3 (Tyr 705) protein levels, regardless of interleukin-6 stimulation in A549 cells. In addition, the extracellular signal-regulated kinase (ERK) was activated after BD or BC treatment. An enhancement in cancer cell mortality was observed upon combined treatment of BD and U0126, the MEK1/2 inhibitor. In conclusion, BD and BC emerge as promising novel STAT3 inhibitors with potential implications in cancer therapy.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Antineoplásicos/química , Células A549 , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
8.
Asian J Pharm Sci ; 18(3): 100811, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37274923

RESUMO

Liposome is one of the most widely used carriers for drug delivery because of the great biocompatibility and biodegradability. Due to the complex formulation components and preparation process, formulation screening mostly relies on trial-and-error process with low efficiency. Here liposome formulation prediction models have been built by machine learning (ML) approaches. The important parameters of liposomes, including size, polydispersity index (PDI), zeta potential and encapsulation, are predicted individually by optimal ML algorithm, while the formulation features are also ranked to provide important guidance for formulation design. The analysis of key parameter reveals that drug molecules with logS [-3, -6], molecular complexity [500, 1000] and XLogP3 (≥2) are priority for preparing liposome with higher encapsulation. In addition, naproxen (NAP) and palmatine HCl (PAL) represented the insoluble and water-soluble molecules are prepared as liposome formulations to validate prediction ability. The consistency between predicted and experimental value verifies the satisfied accuracy of ML models. As the drug properties are critical for liposome particles, the molecular interactions and dynamics of NAP and PAL liposome are further investigated by coarse-grained molecular dynamics simulations. The modeling structure reveals that NAP molecules could distribute into lipid layer, while most PAL molecules aggregate in the inner aqueous phase of liposome. The completely different physical state of NAP and PAL confirms the importance of drug properties for liposome formulations. In summary, the general prediction models are built to predict liposome formulations, and the impacts of key factors are analyzed by combing ML with molecular modeling. The availability and rationality of these intelligent prediction systems have been proved in this study, which could be applied for liposome formulation development in the future.

9.
Mol Pharm ; 20(6): 3187-3201, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167021

RESUMO

Mesoporous silica nanoparticles (MSNs) are widely used in the biomedical field because of their unique and excellent properties. However, the potential toxicity of different shaped MSNs via injection has not been fully studied. This study aims to systematically explore the impact of shape and shear stress on the toxicity of MSNs after injection. An in vitro blood flow model was developed to investigate the cytotoxicity and the underlying mechanisms of spherical MSNs (S-MSN) and rodlike MSNs (R-MSN) in human umbilical vein endothelial cells (HUVECs). The results suggested that the interactions between MSNs and HUVECs under the physiological flow conditions were significantly different from that under static conditions. Whether under static or flow conditions, R-MSN showed better cellular uptake and less oxidative damage than S-MSN. The main mechanism of cytotoxicity induced by R-MSN was due to shear stress-dependent mechanical damage of the cell membrane, while the toxicity of S-MSN was attributed to mechanical damage and oxidative damage. The addition of fetal bovine serum (FBS) alleviated the toxicity of S-MSN by reducing cellular uptake and oxidative stress under static and flow conditions. Moreover, the in vivo results showed that both S-MSN and R-MSN caused cardiovascular toxicity in zebrafish and mouse models due to the high shear stress, especially in the heart. S-MSN led to severe oxidative damage at the accumulation site, such as liver, spleen, and lung in mice, while R-MSN did not cause significant oxidative stress. The results of in vitro blood flow and in vivo models indicated that particle shape and shear stress are crucial to the biosafety of MSNs, providing new evidence for the toxicity mechanisms of the injected MSNs.


Assuntos
Nanopartículas , Dióxido de Silício , Camundongos , Humanos , Animais , Porosidade , Dióxido de Silício/toxicidade , Células Endoteliais , Peixe-Zebra , Nanopartículas/toxicidade
10.
J Nanobiotechnology ; 21(1): 70, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855156

RESUMO

BACKGROUND: Blood-brain barrier (BBB) disruption is a major adverse event after ischemic stroke (IS). Caveolin-1 (Cav-1), a scaffolding protein, played multiple roles in BBB permeability after IS, while the pros and cons of Cav-1 on BBB permeability remain controversial. Numerous studies revealed that extracellular vesicles (EVs), especially stem cells derived EVs, exerted therapeutic efficacy on IS; however, the mechanisms of BBB permeability needed to be clearly illustrated. Herein, we compared the protective efficacy on BBB integrity between bone marrow mesenchymal stem cells derived extracellular vesicles (BMSC-EVs) and EVs from brain endothelial cells (BEC-EVs) after acute IS and investigated whether the mechanism was associated with EVs antagonizing Cav-1-dependent tight junction proteins endocytosis. METHODS: BMSC-EVs and BEC-EVs were isolated and characterized by nanoparticle tracking analysis, western blotting, and transmission electron microscope. Oxygen and glucose deprivation (OGD) treated b. End3 cells were utilized to evaluate brain endothelial cell leakage. CCK-8 and TRITC-dextran leakage assays were used to measure cell viability and transwell monolayer permeability. Permanent middle cerebral artery occlusion (pMCAo) model was established, and EVs were intravenously administered in rats. Animal neurological function tests were applied, and microvessels were isolated from the ischemic cortex. BBB leakage and tight junction proteins were analyzed by Evans Blue (EB) staining and western blotting, respectively. Co-IP assay and Cav-1 siRNA/pcDNA 3.1 vector transfection were employed to verify the endocytosis efficacy of Cav-1 on tight junction proteins. RESULTS: Both kinds of EVs exerted similar efficacies in reducing the cerebral infarction volume and BBB leakage and enhancing the expressions of ZO-1 and Claudin-5 after 24 h pMCAo in rats. At the same time, BMSC-EVs were outstanding in ameliorating neurological function. Simultaneously, both EVs treatments suppressed the highly expressed Cav-1 in OGD-exposed b. End3 cells and ischemic cerebral microvessels, and this efficacy was more prominent after BMSC-EVs administration. Cav-1 knockdown reduced OGD-treated b. End3 cells monolayer permeability and recovered ZO-1 and Claudin-5 expressions, whereas Cav-1 overexpression aggravated permeability and enhanced the colocalization of Cav-1 with ZO-1 and Claudin-5. Furthermore, Cav-1 overexpression partly reversed the lower cell leakage by BMSC-EVs and BEC-EVs administrations in OGD-treated b. End3 cells. CONCLUSIONS: Our results demonstrated that Cav-1 aggravated BBB permeability in acute ischemic stroke, and BMSC-EVs exerted similar antagonistic efficacy to BEC-EVs on Cav-1-dependent ZO-1 and Claudin-5 endocytosis. BMSC-EVs treatment was superior in Cav-1 suppression and neurological function amelioration.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Células-Tronco Mesenquimais , Animais , Ratos , Barreira Hematoencefálica , Células Endoteliais , Claudina-5 , Caveolina 1 , Encéfalo , Endocitose
11.
Cell Oncol (Dordr) ; 46(3): 677-695, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36705889

RESUMO

PURPOSE: Circular RNAs (circRNAs) play important roles in tumour progression. This study aimed to explore the mechanism of hsa_circ_0067717 (termed circRNA_0067717) promoting paclitaxel resistance in nasopharyngeal carcinoma (NPC). METHODS: We assayed CNE-1 and HNE-2 parental cell lines and the corresponding paclitaxel-resistant NPC cell lines using circRNA microarrays. RNA pull-down assay, RNA immunoprecipitation, and RNA fluorescence in situ hybridization were used to identify the molecular mechanisms. RESULTS: Here, we confirm that circRNA_0067717 is significantly upregulated in NPC paclitaxel-resistant cells and is associated with paclitaxel resistance in NPC. Mechanistically, circRNA_0067717 functions as a scaffold for TRIM41 protein (a ubiquitin E3 ligase) and p53 protein. In nasopharyngeal carcinoma paclitaxel-resistant cells, the highly expressed circRNA_0067717 can bind to more TRIM41 and p53 protein, promoting TRIM41-induced p53 ubiquitination and degradation, resulting in a decrease in p53 protein level. Moreover, the 1-176 nt area of circRNA_0067717 and the 301-425 nt region of circRNA_0067717 are the binding sites for p53 and TRIM41, respectively. The resistance of NPC cells to paclitaxel can be reduced by blocking these binding regions of circRNA_0067717. CONCLUSION: We demonstrate that circRNA_0067717 acts as a scaffold for TRIM41 and p53, enhancing paclitaxel chemoresistance in NPC by promoting TRIM41-induced p53 degradation via ubiquitination.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , RNA Circular/genética , Paclitaxel/farmacologia , Proteína Supressora de Tumor p53/genética , Neoplasias Nasofaríngeas/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , MicroRNAs/genética , Proliferação de Células , Ubiquitina-Proteína Ligases
12.
Cancer Med ; 12(10): 11941-11959, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36205192

RESUMO

BACKGROUND: The copper metabolism MURR1 domain (COMMD) protein family is involved in tumorigenicity of malignant tumors. However, as the member of COMMD, the role of COMMD2 in human tumors remains unknown. METHODS: We used The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Human Protein Atlas (HPA) database, Cancer Cell Line Encyclopedia (CCLE) platform, univariate Cox regression analysis, Kaplan-Meier curve, cBioPortal, UALCAN database, Sangerbox online platform, GSCA database gene set enrichment analysis (GSEA), and GeneMANIA to analyze the expression of COMMD2, its prognostic values, genomic alteration patterns, and the correlation with tumor stemness, tumor mutational burden (TMB), microsatellite instability (MSI), and immune infiltrates, drug sensitivity, and gene function enrichment in pan-cancer. qRT-PCR, CCK-8, EdU, wound healing, and transwell migration assays were performed to confirm the function of COMMD2. RESULTS: COMMD2 was strongly expressed in most cancer types. Elevated COMMD2 expression affects the prognosis, clinicopathological stage, and molecular or immune subtypes of various tumors. Moreover, promoter hypomethylation and mutations in the COMMD2 gene may be associated with its high expression and poor survival. Additionally, we discovered that COMMD2 expression was linked to tumor stemness, TMB, MSI, immune cell infiltration, immune-checkpoint inhibitors, and drug sensitivity in pan-cancer. Furthermore, the COMMD2 gene co-expression network is constructed with GSEA analysis, displaying significant interaction of COMMD2 with E2F targets, G2-M checkpoint, and mitotic spindle in bladder cancer (BLCA). Finally, RNA interference data showed suppression of COMMD2 prevented proliferation and migration of BLCA and uterine corpus endometrial carcinoma (UCEC) cells. CONCLUSION: Our findings shed light on the COMMD2 functions in human cancers and demonstrate that it is a promising prognostic biomarker and therapeutic target in pan-cancer.


Assuntos
Carcinoma Endometrioide , Neoplasias da Bexiga Urinária , Feminino , Humanos , Linhagem Celular , Cobre , Multiômica , Neoplasias/genética
13.
Funct Integr Genomics ; 22(6): 1269-1281, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36369302

RESUMO

ZF-HD (zinc finger-homeodomain) gene family plays important roles in plant growth, development, and various stress responses. In the present study, 49, 50, 22, and 32 ZF-HD genes were identified in Gossypium hirsutum, Gossypium barbadense, Gossypium arboretum, and Gossypium raimondii genomes, respectively. According to their phylogenetic features, the ZF-HD genes were classified into six groups. Segmental duplication, whole genome duplication, and transposable elements provides major forces for the expansion of cotton ZF-HD gene family during the divergence of Gossypium species and the divergence between monocots and dicots. The Ka/Ks ratios of the ZF-HD segmental duplication pairs were mainly distributed around 0.12, which indicated that they have experienced strong purifying selective pressure during evolution. Transcriptome analysis showed that 6 Gossypium hirsutum and 4 Gossypium barbadense ZF-HD genes were expressed in all tested tissues. Further, expression profiles under abiotic stress exhibited that the ZF-HD genes were differentially regulated in response to various stresses. Taken together, our findings provide a valuable information on the characterization of ZF-HD gene family and lay foundation for their further function investigations in cotton.


Assuntos
Diploide , Gossypium , Gossypium/genética , Tetraploidia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Família Multigênica , Regulação da Expressão Gênica de Plantas , Dedos de Zinco/genética , Proteínas de Ligação a DNA/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta
14.
Artigo em Inglês | MEDLINE | ID: mdl-36078237

RESUMO

Since "Belt and Road Initiative" (BRI) of 2014, the number of foreigners in China has increased rapidly and China has become an importing country for immigrants, a change ongoing since the beginning of the 21st century. To respond to the rapidly increasing number of foreigners in China, the government frequently revised the immigration policies and issued new regulations for foreigners. However, scholars understand very little about how the foreigners perceive their integration into Chinese society or decide to pursue long-term residency or lawful permanent resident status. While some pioneering studies touch on this, with samples from the coastal megacities, no empirical evidence has been collected from smaller, inner cities. Three new findings about the foreigners in Xi'an, a major city in western China, fill this literature gap. First, the level of subjective social integration is largely influenced by the local networks. Second, the level of objective social integration depends largely on local and hometown networks. Third, the intention to obtain long-term and permanent residency in China is more evident in those foreigners who come from countries covered by the BRI and who consider China to be a better place to live than their home country.


Assuntos
Emigrantes e Imigrantes , Intenção , China , Emigração e Imigração , Humanos , Integração Social
15.
Front Genet ; 13: 900911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035145

RESUMO

Glioblastoma (GBM) is the most common brain tumor, with rapid proliferation and fatal invasiveness. Large-scale genetic and epigenetic profiling studies have identified targets among molecular subgroups, yet agents developed against these targets have failed in late clinical development. We obtained the genomic and clinical data of GBM patients from the Chinese Glioma Genome Atlas (CGGA) and performed the least absolute shrinkage and selection operator (LASSO) Cox analysis to establish a risk model incorporating 17 genes in the CGGA693 RNA-seq cohort. This risk model was successfully validated using the CGGA325 validation set. Based on Cox regression analysis, this risk model may be an independent indicator of clinical efficacy. We also developed a survival nomogram prediction model that combines the clinical features of OS. To determine the novel classification based on the risk model, we classified the patients into two clusters using ConsensusClusterPlus, and evaluated the tumor immune environment with ESTIMATE and CIBERSORT. We also constructed clinical traits-related and co-expression modules through WGCNA analysis. We identified eight genes (ANKRD20A4, CLOCK, CNTRL, ICA1, LARP4B, RASA2, RPS6, and SET) in the blue module and three genes (MSH2, ZBTB34, and DDX31) in the turquoise module. Based on the public website TCGA, two biomarkers were significantly associated with poorer OS. Finally, through GSCALite, we re-evaluated the prognostic value of the essential biomarkers and verified MSH2 as a hub biomarker.

16.
ACS Appl Mater Interfaces ; 14(35): 39775-39786, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36006680

RESUMO

A suitable animal model for preclinical screening and evaluation in vivo could vastly increase the efficiency and success rate of nanomedicine development. Compared with rodents, the transparency of the zebrafish model offers unique advantages of real-time and high-resolution imaging of the whole body and cellular levels in vivo. In this research, we established an apoptosis-sensing xenograft zebrafish tumor model to evaluate the anti-cancer effects of redox-responsive cross-linked Pluronic polymeric micelles (CPPMs) visually and accurately. First, doxorubicin (Dox)-loaded CPPMs were fabricated and characterized with glutathione (GSH)-responsive drug release. Then, the B16F10 xenograft zebrafish tumor model was established to mimic the tumor microenvironment with angiogenesis and high GSH generation for redox-responsive tumor-targeting evaluation in vivo. The high GSH generation was first verified in the xenograft zebrafish tumor model. Compared with ordinary Pluronic polymeric micelles, Dox CPPMs had a much higher accumulation in zebrafish tumor sites. Finally, the apoptosis-sensing B16F10-C3 xenograft zebrafish tumor model was established for visual, rapid, effective, and noninvasive assessment of anti-cancer effects at the cellular level in vivo. The Dox CPPMs significantly inhibited the proliferation of cancer cells and induced apoptosis in the B16F10-C3 xenograft zebrafish tumor model. Therefore, the redox-responsive cross-linked Pluronic micelles showed effective anti-cancer therapy in the xenograft zebrafish tumor model. This xenograft zebrafish tumor model is available for rapid screening and assessment of anti-cancer effects in preclinical studies.


Assuntos
Micelas , Poloxâmero , Animais , Apoptose , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/farmacologia , Xenoenxertos , Humanos , Oxirredução , Poloxâmero/farmacologia , Polímeros/farmacologia , Peixe-Zebra
17.
Small ; 18(20): e2200330, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35451223

RESUMO

Nowadays, destruction of redox homeostasis to induce cancer cell death is an emerging anti-cancer strategy. Here, the authors utilized pH-sensitive acetalated ß-cyclodextrin (Ac-ß-CD) to efficiently deliver dihydroartemisinin (DHA) for tumor ferroptosis therapy and chemodynamic therapy in a synergistic manner. The Ac-ß-CD-DHA based nanoparticles are coated by an iron-containing polyphenol network. In response to the tumor microenvironment, Fe2+ /Fe3+ can consume glutathione (GSH) and trigger the Fenton reaction in the presence of hydrogen peroxide (H2 O2 ), leading to the generation of lethal reactive oxygen species (ROS). Meanwhile, the OO bridge bonds of DHA are also disintegrated to enable ferroptosis of cancer cells. Their results demonstrate that these nanoparticles acted as a ROS generator to break the redox balance of cancer cells, showing an effective anticancer efficacy, which is different from traditional approaches.


Assuntos
Ciclodextrinas , Ferroptose , Linhagem Celular Tumoral , Glutationa/metabolismo , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Nanomedicina , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral
18.
J Colloid Interface Sci ; 620: 57-66, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35405566

RESUMO

Li-rich layered oxides are recognized as promising candidates for next-generation Li-ion batteries owing to the high capacity of >250 mAh g-1, but the severe voltage fade has prevented their commercialization. It is widely known that high-voltage charge processes result in layered-to-spinel structural evolution and voltage fade in Li-rich layered oxides. This work emphasizes that limiting the low-voltage reduction can maintain the structure and voltage stability of Li-rich layered oxides after the 4.6 V high-voltage charge processes. A strategy of limiting the low-voltage (<2.8 V) reduction by cycling at 4.6-2.8 V was performed in traditional Li1.2Ni0.13Mn0.54Co0.13O2 and high-Ni Li1.2Ni0.222Mn0.504Co0.074O2. After 300 cycles, traditional Li1.2Ni0.13Mn0.54Co0.13O2 and high-Ni Li1.2Ni0.222Mn0.504Co0.074O2 cycling at 4.6-2 V showed midpoint discharge voltages of 2.83 V and 2.97 V with high voltage fade rates of 2.25 mV/cycle and 2.24 mV/cycle, respectively. While the two materials cycling at 4.6-2.8 V can maintain discharge midpoint voltages of 3.34 V and 3.49 V, with low voltage decay rates of 0.692 mV/cycle and 0.632 mV/cycle, respectively. To better understand the voltage performance, their electric structures were calculated by density functional theory. Physical characterizations were also used to analyze their differences in structural evolution. The results suggested that limiting low-voltage reduction in Li-rich layered oxides is highly necessary for maintaining their structure and voltage stability.

19.
J Colloid Interface Sci ; 605: 718-726, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34365308

RESUMO

Lithium-rich layered oxides are believed to be the most competitive cathode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity, but the poor cycle stability and voltage attenuation severely limit their commercial applications. In this paper, a simple method combining surface treatment via pyrolysis of polyvinyl alcohol (PVA) and potassium ions (K+) doping, is designed to improve the above defects of the cobalt-free Lithium-rich material Li1.2Mn0.6Ni0.2O2 (LMR). The insoluble surface byproduct Li2CO3 and amorphous carbon nanolayer derived from the pyrolysis process of PVA alleviate the corrosion of acidic species with a favorable conductivity, while a large radius of K+ can enlarge the space of the lithium (Li) layer to facilitate the diffusion of Li+, suppress voltage polarization, and synchronously restrain the transformation from a layered structure to a spinel-like structure. After modification, the LMR material exhibits a great initial discharge capacity of 266.0 mAh g-1 at 0.1C, a remarkable rate capability of 159.1 mAh g-1 at 5C and an extremely high capacity retention of 98.5% over 200 cycles at 0.5C with a small voltage drop.

20.
Chin Med ; 16(1): 114, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34743749

RESUMO

With the increasing epidemiology of autoimmune disease worldwide, there is an urgent need for effective drugs with low cost in clinical treatment. Triptolide, the most potent bioactive compound from traditional Chinese herb Tripterygium Wilfordii Hook F, possesses immunosuppression and anti-inflammatory activity. It is a potential drug for the treatment of various autoimmune diseases, but its clinical application is still restricted due to severe toxicity. In this review, the pharmacodynamic effects and pharmacological mechanisms of triptolide in autoimmune diseases are summarized. Triptolide exerts therapeutic effect by regulating the function of immune cells and the expression of cytokines through inflammatory signaling pathways, as well as maintaining redox balance and gut microbiota homeostasis. Meanwhile, the research progress on toxicity of triptolide to liver, kidney, reproductive system, heart, spleen, lung and gastrointestinal tract has been systematically reviewed. In vivo experiments on different animals and clinical trials demonstrate the dose- and time- dependent toxicity of triptolide through different administration routes. Furthermore, we focus on the strategies to reduce toxicity of triptolide, including chemical structural modification, novel drug delivery systems, and combination pharmacotherapy. This review aims to reveal the potential therapeutic prospect and limitations of triptolide in treating autoimmune diseases, thus providing guiding suggestions for further study and promoting its clinical translation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA