Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 278: 18-24, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28347905

RESUMO

The mechanism behind surface relaxivity within organic porosity in shales has been an unanswered question. Here, we present results that confirm the existence of intermolecular homonuclear dipolar coupling between solid and liquid phases in sedimentary organic matter. Transverse magnetization exchange measurements were performed on an organic-rich shale saturated with liquid hydrocarbon. Liquid and solid constituents were identified through both sample resaturation and through their T1/T2 ratios. Extensive cross peaks are observed in the T2-T2 exchange spectra between the solid and liquid constituents, indicating an exchange of magnetization between the two phases. This result cannot arise from physical molecular diffusion, and the dissolution energies are too high for chemical exchange, such that the magnetization exchange must arise from intermolecular homonuclear dipolar coupling. These results both confirm a possible source of surface relaxivity in organic matter and emphasize caution in the use of standard porous media interpretations of relaxation results in shales because of coupling between different magnetization environments.

2.
J Magn Reson ; 275: 80-89, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28024257

RESUMO

Nuclear magnetic resonance (NMR) relaxometry is a common technique used to assess the pore size of fluid-filled porous materials in a wide variety of fields. However, the NMR signal itself only provides a relative distribution of pore size. To calculate an absolute pore size distribution from the NMR data, the material's surface relaxivity needs to be known. Here, a method is presented using laser-induced breakdown spectroscopy (LIBS) to evaluate surface relaxivity in sandstones. NMR transverse and longitudinal relaxation was measured on a set of sandstone samples and the surface relaxivity was calculated from the pore size distribution determined with MICP measurements. Using multivariate analysis, it was determined that the LIBS data can predict with good accuracy the longitudinal (R2∼0.84) and transverse (R2∼0.79) surface relaxivity. Analysis of the regression coefficients shows significant influence from several elements. Some of these are elements previously established to have an effect on surface relaxivity, such as iron and manganese, while others are not commonly associated with surface relaxivity, such as cobalt and titanium. Furthermore, LIBS provides advantages compared to current methods to calibrate surface relaxivity in terms of speed, portability, and sample size requirements. While this paper focuses on geological samples, the method could potentially be expanded to other types of porous materials.

3.
Langmuir ; 21(10): 4376-81, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16032850

RESUMO

We present the first 13C magnetic resonance imaging study of CO2 transient adsorption/desorption processes in a zeolite 5A column. CO2 transient concentration profiles were measured with a centric scan spin-echo single point imaging technique. The adsorption wave profiles were determined under flow conditions, with the results analyzed by the Bohart-Adams model. The model adequately accounts for the spatial and the temporal behavior of CO2 in the column. CO2 adsorption rate constants were calculated from the fit. Desorption profiles were acquired by blowing a helium stream through a zeolite 5A column saturated with CO2. An asymmetry between the adsorption and desorption profiles is readily apparent. A linear relationship between the CO2 condensed phase concentration and square root of time was observed.

4.
Anal Chem ; 77(6): 1824-30, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15762592

RESUMO

The direct detection of hydrocarbon fluid and the discrimination of water through carbon-13 magnetic resonance imaging (MRI) would be a significant advance in many scientific fields including food, petrogeological, and environmental sciences. Carbon-13 MRI is a noninvasive analytical technique that has great potential for direct detection of hydrocarbons. However, the low natural abundance of carbon-13, low gyromagnetic ratio, and generically short transverse signal lifetimes in realistic porous media all conspire to hinder carbon-13 MRI. A multiple echo pure phase encode MRI technique introduced in this paper helps to overcome these limitations. As a pure phase encode technique, it is immune to artifacts arising from inhomogeneous B0 fields. It is also, by its nature, more quantitative than most MRI methods. Viscous hydrocarbon flow through a sand bed, a simple realistic porous medium, was used as our test system. Flow in this model system was driven by capillary suction. The detection limit, spatially resolved, was determined to be 26 mg.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA