Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2705, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302548

RESUMO

Accurate estimation of concrete (including shotcrete) consumption plays a crucial role in tunnel construction. A novel method has been introduced to accurately estimate concrete consumption with terrestrial laser scanning (TLS). The estimation needs to capture TLS data of tunnel surfaces at different stages of construction. Unrolling point clouds, a novel two-stage algorithm consisting of noise removal and hole filling has been used to generate resampled points. Furthermore, resampled points from two scans (before and after lining construction) ultimately generate an innovative computation model composed of multiple hexahedral elements, which is used for calculating volumes. The proposed technique was applied to the Tiantaishan highway tunnel and Da Fang Shan high-speed railway tunnel. The calculation relative error of the rebound rate is 0.19%, and the average relative error in predicting the demand for secondary lining concrete is 0.15%. Compared with 3D Delaunay with curve fitting, the proposed technique offers a more straightforward operation and higher accuracy. Considering factors such as tunnel geometry, support design, and concrete properties, a computational model will provide valuable insights into optimizing resource allocation and reducing material waste during construction.

2.
Sensors (Basel) ; 16(10)2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27782063

RESUMO

Tunnel lining (bare-lining) cross-sections play an important role in analyzing deformations of tunnel linings. The goal of this paper is to develop an automatic method for extracting bare-lining cross-sections from terrestrial laser scanning (TLS) point clouds. First, the combination of a 2D projection strategy and angle criterion is used for tunnel boundary point detection, from which we estimate the two boundary lines in the X-Y plane. The initial direction of the cross-sectional plane is defined to be orthogonal to one of the two boundary lines. In order to compute the final cross-sectional plane, the direction is adjusted twice with the total least squares method and Rodrigues' rotation formula, respectively. The projection of nearby points is made onto the adjusted plane to generate tunnel cross-sections. Finally, we present a filtering algorithm (similar to the idea of the morphological erosion) to remove the non-lining points in the cross-section. The proposed method was implemented on railway tunnel data collected in Sichuan, China. Compared with an existing method of cross-sectional extraction, the proposed method can offer high accuracy and more reliable cross-sectional modeling. We also evaluated Type I and Type II errors of the proposed filter, at the same time, which gave suggestions on the parameter selection of the filter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA