Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296747

RESUMO

The electrodes of two-dimensional (2D) titanium dioxide (TiO2) nanosheet arrays were successfully fabricated for microRNA-155 detection. The (001) highly active crystal face was exposed to catalyze signaling molecules ascorbic acid (AA). Zero-dimensional (0D) titanium carbide quantum dots (Ti3C2Tx QDs) were modified to the electrode as co-catalysts and reduced the recombination rate of the charge carriers. Spectroscopic methods were used to determine the band structure of TiO2 and Ti3C2Tx QDs, showing that a type Ⅱ heterojunction was built between TiO2 and Ti3C2Tx QDs. Benefiting the advantages of materials, the sensing platform achieved excellent detection performance with a wide liner range, from 0.1 pM to 10 nM, and a low limit of detection of 25 fM (S/N = 3).

2.
RSC Adv ; 12(30): 19495-19504, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35865570

RESUMO

In the field of photoelectrochemical (PEC) enzyme biosensors, constructing efficient photoelectrodes, in which the recombination of photogenerated carriers is an important factor affecting the performance, is of great significance. Herein, to enhance the separation efficiency of photogenerated carriers, titanium dioxide (TiO2) nanosheet (NS)/bismuth oxyiodide (BiOI) NS/glucose oxidase (GOx) composites were prepared via hydrothermal and solvothermal methods. Single-crystal anatase TiO2 NSs with a high percentage of (001) facets lead to better photocarrier separation due to heterojunctions between facets. After coupling with BiOI NSs, the photoelectrochemical performance of the electrode was greatly improved. The photogenerated electrons from TiO2 and BiOI gathered at TiO2 (101) and were exported through the fluorine-doped tin oxide (FTO) substrate to generate electrical signals. Photogenerated holes were transferred to TiO2 (001) and BiOI to participate in the enzymatic reaction, showing the outstanding separation of electrons and holes. The prepared TiO2 NS/BiOI NS/GOx glucose biosensor achieved satisfactory results, with sensitivity of 14.25 µA mM-1 cm-2, a linear measurement range of 0-1 mM, and a limit of detection (3S/N) of 0.01 mM in phosphate buffered saline (PBS) at a pH of 7.4. The mechanism for the efficient separation of photogenerated carriers based on the facet heterojunctions introduced in this paper also provides new insights into other optoelectronic biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA