Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.919
Filtrar
1.
Comput Biol Chem ; 113: 108207, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39265463

RESUMO

Apoptotic proteins play a crucial role in the apoptosis process, ensuring a balance between cell proliferation and death. Thus, further elucidating the regulatory mechanisms of apoptosis will enhance our understanding of their functions. However, the development of computational methods to accurately identify positive and negative regulation of apoptosis remains a significant challenge. This work proposes a machine learning model based on multi-feature fusion to effectively identify the roles of positive and negative regulation of apoptosis. Initially, we constructed a reliable benchmark dataset containing 200 positive regulation of apoptosis and 241 negative regulation of apoptosis proteins. Subsequently, we developed a classifier that combines the support vector machine (SVM) with pseudo composition of k-spaced amino acid pairs (PseCKSAAP), composition transition distribution (CTD), dipeptide deviation from expected mean (DDE), and PSSM-composition to identify these proteins. Analysis of variance (ANOVA) was employed to select optimized features that could yield the maximum prediction performance. Evaluating the proposed model on independent data revealed and achieved an accuracy of 0.781 with an AUROC of 0.837, demonstrating our model's potent capabilities.

2.
FASEB J ; 38(17): e70027, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39221615

RESUMO

The complex pathogenesis of lung ischemia-reperfusion injury (LIRI) was examined in a murine model, focusing on the role of pyroptosis and its exacerbation of lung injury. We specifically examined the levels and cellular localization of pyroptosis within the lung, which revealed alveolar macrophages as the primary site. The inhibition of pyroptosis by VX-765 reduced the severity of lung injury, underscoring its significant role in LIRI. Furthermore, the therapeutic potential of ß-hydroxybutyrate (ß-OHB) in ameliorating LIRI was examined. Modulation of ß-OHB levels was evaluated by ketone ester supplementation and 3-hydroxybutyrate dehydrogenase 1 (BDH-1) gene knockout, along with the manipulation of the SIRT1-FOXO3 signaling pathway using EX-527 and pCMV-SIRT1 plasmid transfection. This revealed that ß-OHB exerts lung-protective and anti-pyroptotic effects, which were mediated through the upregulation of SIRT1 and the enhancement of FOXO3 deacetylation, leading to decreased pyroptosis markers and lung injury. In addition, ß-OHB treatment of MH-S cells in vitro showed a concentration-dependent improvement in pyroptosis, linking its therapeutic benefits to specific cell mechanisms. Overall, this study highlights the significance of alveolar macrophage pyroptosis in the exacerbation of LIRI and indicates the potential of ß-OHB in mitigating injury by modulating the SIRT1-FOXO3 signaling pathway.


Assuntos
Ácido 3-Hidroxibutírico , Proteína Forkhead Box O3 , Macrófagos Alveolares , Camundongos Endogâmicos C57BL , Piroptose , Traumatismo por Reperfusão , Transdução de Sinais , Sirtuína 1 , Animais , Proteína Forkhead Box O3/metabolismo , Piroptose/efeitos dos fármacos , Sirtuína 1/metabolismo , Camundongos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Masculino , Ácido 3-Hidroxibutírico/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Carbazóis/farmacologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/tratamento farmacológico
3.
J Mol Med (Berl) ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227403

RESUMO

Endometriosis is a multifactorial gynecological disease, with angiogenesis as a key hallmark. The role of exosomal microRNAs (miRNAs) in endometriosis is not well understood. This study investigates differentially expressed exosomal miRNAs linked to angiogenesis in endometriosis, clarifies their molecular mechanisms, and identifies potential targets. Primary endometrial stromal cells (ESCs) were cultured, and exosomes were extracted. In a co-culture system, ESC-derived exosomes were taken up by human umbilical vein endothelial cells (HUVECs). Endometriosis implant-ESC-derived exosomes (EI-EXOs) significantly promoted HUVEC proliferation, migration and tube formation compared to normal endometrium-exosomes (NE-EXOs), a finding consistent in vivo in mice. MiRNA sequencing and bioinformatics identified differentially expressed miR-21-5p from EI-EXOs, confirmed by RT-qPCR. The miR-21-5p inhibitor or GW4869 attenuated EI-EXO-induced HUVEC proliferation, migration, and tube formation. TIMP3 overexpression diminished the pro-angiogenic effect of EI-EXOs, which was reversed by adding EI-EXOs or upregulating miR-21-5p. These findings validate the crosstalk between ESCs and HUVECs mediated by exosomal miR-21-5p, and confirm the miR-21-5p-TIMP3 axis in promoting angiogenesis in endometriosis. KEY MESSAGES: ESC-derived exosomes were found to be taken up by recipient cells, i.e. HUVECs. Functionally, endometriosis implant-ESC-derived exosomes (EI-EXOs) could significantly promote the proliferation, migration and tube formation of HUVECs compared to normal endometrium-exosomes (NE-EXOs). Through miRNA sequencing and bioinformatics analysis, differentially expressed miR-21-5p released by EI-EXOs was chosen, as confirmed by qRT-PCR. miR-21-5p inhibitor or GW4869 was found to attenuate the proliferation, migration, and tube formation of HUVECs induced by EI-EXOs. In turn, TIMP3 overexpression diminished the pro-angiogenic effect of EI-EXOs, and this angiogenic phenotype was reversed once EI-EXOs were added or miR-21-5p was upregulated.

4.
Gene ; 933: 148920, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241970

RESUMO

Chronic heart failure (CHF) combined with hyperuricemia (HUA) is a comorbidity that is hard to diagnose by a single biomarker. Exosomal miRNAs are differentially expressed in cardiovascular diseases and are closely associated with regulating most biological functions. This study aimed to provide evidence for miRNA as a new molecular marker for precise diagnosis of the comorbidity of CHF with HUA and further analyze the potential targets of differentially expressed miRNA. This controlled study included 30 CHF patients combined with HUA (Group T) and 30 healthy volunteers (Group C). 6 peripheral blood samples from Group T and Group C were analyzed for exosomal miRNAs by high-throughput sequencing and then validated in the remaining 24 peripheral blood samples from Group T and Group C by applying real-time PCR (RT-PCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using R software to predict the differential miRNAs' action targets. 42 differentially expressed miRNAs were detected (18 upregulated and 24 downregulated), in which miR-27a-5p was significantly upregulated (P<0.01), and miR-139-3p was significantly downregulated (P<0.01) in Group T. The combination of miR-27a-5p and miR-139-3p predicted the development of CHF combined with HUA with a maximum area under the curve (AUC) of 0.899 (95 % CI: 0.812-0.987, SEN=79.2 %, SPE=91.7 %, J value = 0.709). GO and KEGG enrichment analysis revealed that the differentially expressed miRNAs had a role in activating the AMPK-mTOR signaling pathway to activate the autophagic response. Collectively, our findings suggest that upregulated exosomal miR-27a-5p combined with downregulated exosomal miR-139-3p can be used as a novel molecular marker for precise diagnosis of CHF combined with HUA and enhanced autophagy by AMPK-mTOR signaling pathway may be one pathogenesis of the differentially expressed miRNAs.

5.
Transl Cancer Res ; 13(8): 4159-4171, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39262478

RESUMO

Background: Tetraspanin 1 (TSPAN1) is a newly discovered protein of the tetrameric protein family encoded by the TSPAN1 gene localized in the 1p34 chromosome region. TSPAN1 has been shown to be associated with various malignancies. In this study, we aimed to investigate the prognostic significance of TSPAN1 in breast cancer. Estrogen receptor-positive (ER+) breast cancer is the largest breast cancer subgroup, and ER-targeted therapies have significantly prolonged survival and improved symptoms in advanced breast cancer. TSPAN1 overexpression was found to be associated with a poor prognosis in ER+ breast cancer. Methods: We analyzed the expression of TSPAN1 in breast cancer tissues and cell lines using western blotting and quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results: TSPAN1 expression was higher in breast cancer cells as compared with normal breast tissue. There was a significant association between a high TSPAN1 level and a low survival rate. Inhibition of TSPAN1 significantly reduced the proliferation and invasion of BT474 cells both in vitro and in vivo. The downregulation of TSPAN1 in breast cancer cells significantly reduced the levels of p-mitogen-activated protein kinase 1 (MEK1) (S298) and p-extracellular signal-regulating kinase (ERK) 1/2. Conclusions: TSPAN1 modulates downstream extracellular matrix (ECM) receptor signaling cascades and promotes cellular proliferation and invasion in breast cancer. TSPAN1 inhibition may be a potential new treatment strategy for breast cancer.

6.
Transl Pediatr ; 13(8): 1312-1326, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39263295

RESUMO

Background: Early enteral nutrition and the gut microbiota profoundly influence neonatal brain development, with short-chain fatty acids (SCFAs) from the microbiota playing a pivotal role. Understanding the relationship between dysbiosis, SCFAs, and brain development is crucial. In this study, we investigated the impact of antibiotics on the concentration of SCFAs in neonatal feces. Additionally, we developed a model of gut dysbiosis in neonatal mice to examine the potential relationship between this imbalance, SCFAs production, and brain function development. Methods: We measured the SCFAs content in the feces of two groups of neonates, categorized based on whether antibiotics were used, and conducted the Neonatal Behavioral Neurological Assessment (NBNA) test on all neonates. Then we evaluated fecal SCFAs levels in neonates and neonatal mice post-antibiotic treatment using liquid chromatography-mass spectrometry (LC-MS) analysis. Morris water maze (MWM) tests assessed behavioral performance, and western blot analysis examined brain tissue-related proteins-neuron-specific enolase (NSE), ionized calcium binding adaptor molecule-1 (IBA1), and myelin basic proteins (MBP). Results: The use of antibiotics did not affect the NBNA scores of the two groups of neonates, but it did reduce the SCFAs content in their feces. Antibiotic administration induced gut dysbiosis in mice, resulting in decreased IBA1 and MBP expression. Interventions to restore gut microbiota ameliorated these effects. Mice with dysbiosis displayed cognitive deficits in the MWM test. SCFAs levels decreased during dysbiosis, and increased upon microbiota recovery. Conclusions: Neonatal dysbiosis affects the microbiota-gut-brain axis, impairing cognitive function and nervous system development. Reduced SCFAs may contribute significantly to these alterations.

7.
Bioorg Med Chem Lett ; 113: 129951, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251112

RESUMO

Here, we report the synthesis of a series of oxyacanthine derivatives and evaluation for their anti-SARS-CoV-2 activity in Vero E6 cells. In order to eliminate the potential metabolic activation caused by para-methylene phenol moiety in oxyacanthine, totally 29 derivatives were designed and synthesized, resulting in 23 compounds with antivirus IC50 below 5.00 µM and 9 compounds with antivirus IC50 below 1.00 µM. Among them, amides compound 4a and 4d exhibited potent anti-SARS-CoV-2 activity and the most favorable selectivity index (SI) in vitro with the SI values of 115 and 70, respectively. The pharmacokinetic properties of 4a and 4d were also assessed. Much more improved exposure in mice, longer half-life (T1/2), and increased oral bioavailability were observed for both compounds 4a and 4d compared with oxyacanthine.

8.
Brain Behav Immun ; 123: 108-122, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260763

RESUMO

Chronic HIV infection can dysregulate lipid/cholesterol metabolism in the peripheral system, contributing to the higher incidences of diabetes and atherosclerosis in HIV (+) individuals. Recently, accumulating evidence indicate that HIV proteins can also dysregulate lipid/cholesterol metabolism in the brain and such dysregulation could be linked with the pathogenesis of HIV-associated neurological disorders (HAND)/NeuroHIV. To further characterize the association between lipid/cholesterol metabolism and HAND, we employed HIV-inducible transactivator of transcription (iTAT) and control mice to compare their brain lipid profiles. Our results reveal that HIV-iTAT mice possess dysregulated lipid profiles and have increased numbers of lipid droplets (LDs) accumulation microglia (LDAM) in the brains. HIV protein TAT can upregulate LDs formation through enhancing the lipid/cholesterol synthesis in vitro. Mechanistically, HIV-TAT increases the expression of sterol regulatory element-binding protein 2 (SREBP2) through microRNA-124 downregulation. Cholesterol synthesis inhibition can block HIV-TAT-mediated NLRP3 inflammasome activation and microglial activation in vitro as well as mitigate aging-related behavioral impairment and memory deficiency in HIV-iTAT mice. Taken together, our results indicate an inherent role of lipid metabolism and LDAM in the pathogenesis of NeuroHIV (immunometabolism). These findings suggest that LDAM reversal through modulating lipid/cholesterol metabolism could be a novel therapeutic target for ameliorating NeuroHIV symptoms in chronic HIV (+) individuals.

9.
Bioorg Med Chem Lett ; 112: 129942, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39218405

RESUMO

COVID-19 has caused severe consequences in terms of public health and economy worldwide since its outbreak in December 2019. SARS-CoV-2 3C-like protease (3CLpro), crucial for the viral replications, is an attractive target for the development of antiviral drugs. In this study, several kinds of Michael acceptor warheads were utilized to hunt for potent covalent inhibitors against 3CLpro. Meanwhile, novel 3CLpro inhibitors with the P3-3,5-dichloro-4-(2-(dimethylamino)ethoxy)phenyl moiety were designed and synthesized which may form salt bridge with residue Glu166. Among them, two compounds 12b and 12c exhibited high inhibitory activities against SARS-CoV-2 3CLpro. Further investigations suggested that 12b with an acrylate warhead displayed potent activity against HCoV-OC43 (EC50 = 97 nM) and SARS-CoV-2 replicon (EC50 = 45 nM) and low cytotoxicity (CC50 > 10 µM) in Huh7 cells. Taken together, this study devised two series of 3CLpro inhibitors and provided the potent SARS-CoV-2 3CLpro inhibitor (12b) which may be used for treating coronavirus infections.


Assuntos
Acrilatos , Antivirais , Proteases 3C de Coronavírus , SARS-CoV-2 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , SARS-CoV-2/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Acrilatos/farmacologia , Acrilatos/química , Acrilatos/síntese química , Relação Estrutura-Atividade , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , Descoberta de Drogas , COVID-19/virologia , Estrutura Molecular
10.
Eur J Obstet Gynecol Reprod Biol ; 302: 61-64, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39236642

RESUMO

Cases of fetal volvulus without malrotation are extremely uncommon and pose a life-threatening condition of acute abdomen. In cases of inadequate intestinal rotation, the narrowing of the attachment of the mesenteric root can easily cause intestinal torsion and consequent local blood circulation disorders within the intestinal tract, leading to aseptic necrosis and simultaneous intestinal perforation, resulting in meconium peritonitis, ascites, anemia, and potentially fetal death. In ultrasound examinations, it may be the preferred examination method for this disease. Ultrasound physicians should improve their understanding of this disease in prenatal diagnosis, as it has important clinical value for obstetric management and neonatal treatment, thereby potentially improving adverse pregnancy outcomes.

11.
Opt Lett ; 49(15): 4413-4416, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090947

RESUMO

Lobster eye x ray micro pore optics (MPO) is a novel bionic optical technology with a unique microchannel structure. All square microchannels point to the same spherical center position, providing a wide field of view and high focusing and imaging capabilities. Enhancing the optical performance of MPO has been a significant challenge. This study introduces what we believe is a novel approach using a stiffener and staggered-square honeycomb structure design to enhance the optical properties of the MPO devices. The x ray test results show that the multifiber stiffener design enhances optical quality by approximately 20% during the melt pressing stage. The staggered-square honeycomb structure design reduces channel errors by nearly 67% in the thermal forming and coating stage. Consequently, the angular resolution of the MPO has been significantly enhanced, reducing from 4.25 to 2.68 arc min. This innovative structure design shows promise for enhancing lobster eye optics performance and has potential applications in the related field.

13.
J Cell Mol Med ; 28(15): e18583, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39123292

RESUMO

In this study, we investigated whether the ability of aucubin to mitigate the pathology of GONFH involves suppression of TLR4/NF-κB signalling and promotion of macrophage polarization to an M2 phenotype. In necrotic bone tissues from GONFH patients, we compared levels of pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages as well as levels of TLR4/NF-κB signalling. In a rat model of GONFH, we examined the effects of aucubin on these parameters. We further explored its mechanism of action in a cell culture model of M1 macrophages. Necrotic bone tissues from GONFH patients contained a significantly increased macrophage M1/M2 ratio, and higher levels of TLR4, MYD88 and NF-κB p65 than bone tissues from patients with hip osteoarthritis. Treating GONFH rats with aucubin mitigated bone necrosis and demineralization as well as destruction of trabecular bone and marrow in a dose-dependent manner, based on micro-computed tomography. These therapeutic effects were associated with a decrease in the overall number of macrophages, decrease in the proportion of M1 macrophages, increase in the proportion of M2 macrophages, and downregulation of TLR4, MYD88 and NF-κB p65. These effects in vivo were confirmed by treating cultures of M1 macrophage-like cells with aucubin. Aucubin mitigates bone pathology in GONFH by suppressing TLR4/NF-κB signalling to shift macrophages from a pro- to anti-inflammatory phenotype.


Assuntos
Glucosídeos Iridoides , Macrófagos , Fator 88 de Diferenciação Mieloide , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Modelos Animais de Doenças , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/metabolismo , Necrose da Cabeça do Fêmur/tratamento farmacológico , Glucocorticoides/farmacologia , Glucosídeos Iridoides/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Fenótipo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
14.
PLoS One ; 19(8): e0306866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39146267

RESUMO

Low-dimensional materials have demonstrated strong potential for use in diverse flexible strain sensors for wearable electronic device applications. However, the limited contact area in the sensing layer, caused by the low specific surface area of typical nanomaterials, hinders the pursuit of high-performance strain-sensor applications. Herein, we report an efficient method for synthesizing TiO2-based nanocomposite materials by directly using industrial raw materials with ultrahigh specific surface areas that can be used for strain sensors. A kinetic study of the self-seeded thermal hydrolysis sulfate process was conducted for the controllable synthesis of pure TiO2 and related TiO2/graphene composites. The hydrolysis readily modified the crystal form and morphology of the prepared TiO2 nanoparticles, and the prepared composite samples possessed a uniform nanoporous structure. Experiments demonstrated that the TiO2/graphene composite can be used in strain sensors with a maximum Gauge factor of 252. In addition, the TiO2/graphene composite-based strain sensor showed high stability by continuously operating over 1,000 loading cycles and aging tests over three months. It also shows that the fabricated strain sensors have the potential for human voice recognition by characterizing letters, words, and musical tones.


Assuntos
Grafite , Nanocompostos , Titânio , Titânio/química , Grafite/química , Humanos , Nanocompostos/química , Voz , Dispositivos Eletrônicos Vestíveis
15.
Alzheimers Dement ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129310

RESUMO

INTRODUCTION: The apolipoprotein E (APOE) ε4 allele exerts a significant influence on peripheral inflammation and neuroinflammation, yet the underlying mechanisms remain elusive. METHODS: The present study enrolled 54 patients diagnosed with late-onset Alzheimer's disease (AD; including 28 APOE ε4 carriers and 26 non-carriers). Plasma inflammatory cytokine concentration was assessed, alongside bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs). RESULTS: Plasma tumor necrosis factor α, interferon γ, and interleukin (IL)-33 levels increased in the APOE ε4 carriers but IL-7 expression notably decreased. A negative correlation was observed between plasma IL-7 level and the hippocampal atrophy degree. Additionally, the expression of IL-7R and CD28 also decreased in PBMCs of APOE ε4 carriers. ScRNA-seq data results indicated that the changes were mainly related to the CD4+ Tem (effector memory) and CD8+ Tem T cells. DISCUSSION: These findings shed light on the role of the downregulated IL-7/IL-7R pathway associated with the APOE ε4 allele in modulating neuroinflammation and hippocampal atrophy. HIGHLIGHTS: The apolipoprotein E (APOE) ε4 allele decreases plasma interleukin (IL)-7 and aggravates hippocampal atrophy in Alzheimer's disease. Plasma IL-7 level is negatively associated with the degree of hippocampal atrophy. The expression of IL-7R signaling decreased in peripheral blood mononuclear cells of APOE ε4 carriers Dysregulation of the IL-7/IL-7R signal pathways enriches T cells.

16.
Sci Prog ; 107(3): 368504241275402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39150380

RESUMO

Double-row planetary gear set (PGS) is a common form of the PGS, which is relatively more complex than the regular PGSs. It consists of one sun gear, several long planets, several short planets, two ring gears, and one carrier. Due to the significantly wider tooth width of the long planet compared to the sun gear, the axial meshing position between the sun gear and the long planet can be adjusted. The vibrations of PGS should vary with different axial meshing positions. If the axial position of the sun gear is optimized, the vibrations of PGS can be reduced. This work establishes a dynamic model of a double-row PGS. The dynamic model considers the mesh forces of the gear pairs and the supporting forces of the bearing. The effect of the sun gear axial position on the sun gear and ring gear #2 vibrations are investigated. Finally, the recommended axial position for the sun gear is provided.

17.
Contemp Clin Trials Commun ; 41: 101323, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39188412

RESUMO

Objective: To assess the clinical effectiveness of the balance chiropractic therapy (BCT) compared with traction therapy (TT) for patients with cervical spondylotic radiculopathy. Methods: Subjects were enrolled from four hospitals. Eligible patients will be randomized to one of the two arms: the treatment group and the control group. In the treatment group, patients received the BCT for 20 days, while patients in the control group received TT. Patients visited the physician at 1- and 3-month follow-up. The primary outcome was pain severity measured with a Visual Analog Scale (VAS). Secondary outcomes included cervical curvature measured using the Borden method, a composite of functional status measured by the Neck Disability Index (NDI), patient health status (evaluated by the SF-36 health survey) and adverse events (AEs) as reported in the trial. Results: Of the 240 randomly assigned patients, 120 participants were assigned to the BCT and 120 to the TT. 231 (96.3 %) provided follow-up data at 1 and 3 months. There were no significant differences in baseline data between the two groups (P > 0.05), indicating good comparability. According to the results, after BCT and TT treatment, the pain VAS score, cervical curvature, NDI scores and SF-36 scores of two groups was significantly improved (P < 0.05). Furthermore, at 20 days of treatment and 1 and 3 months of follow-up, the participants in the BCT group showed superior treatment outcomes on both primary and secondary measures. Conclusion: The BCT may be a novel strategy for the treatment of the cervical spondylotic radiculopathy. Trial registration: Clinical Trials.gov Identifier: NCT02705131. Registered on March 10, 2016, https://clinicaltrials.gov/study/NCT02705131?cond=NCT02705131&rank=1&tab=table.

18.
Biomed Chromatogr ; : e5996, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39175367

RESUMO

Molnupiravir (MO) is a pyrimidine nucleoside anti-SARS-CoV-2 drug. MO treatment could cause mild liver injury. However, the underlying mechanism of MO-induced liver injury and the metabolic pathway of MO in vivo are unclear. In this study, metabolomics analysis and molecular biology methods were used to explore these issues. Through metabolomics analysis, it was found that the homeostasis of pyrimidine, purine, lysophosphatidylcholine (LPC), and amino acids in mice was destroyed after MO treatment. A total of 80 changed metabolites were detected. Among these changed metabolites, 4-ethylphenyl sulfate, dihydrouracil, and LPC 20:0 was related to the elevation of alkaline phosphatase (ALP), interleukin-6 (IL6), and nuclear factor kappa-B (NF-κB). The levels of 4-ethylphenyl sulfate, dihydrouracil, and LPC 20:0 in plasma were positively correlated with their levels in the liver, suggesting that these metabolites were associated with MO-induced liver injury. MO treatment could increase NHC and cytidine levels, activate cytidine deaminase (CDA), and increase LPC levels. CDA and LPC could increase the mRNA expression level of toll-like receptor (TLR). The current study indicated that the elevation of hepatic TLR may be an important reason for MO leading to the liver injury.

19.
Colloids Surf B Biointerfaces ; 244: 114142, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39116603

RESUMO

Hyperglycemia provides a favorable breeding ground for bacteria, resulting in repeated and persistent inflammation of wounds and prolonged healing processes. In this study, platinum (Pt) nanoparticles (NPs) and glucose oxidase (GOx) were decorated on the surface of camelina lipid droplets (OB) linked with hFGF2, forming PGOB through in situ reduction of Pt ions and electrostatic adsorption, respectively. PGOB exhibits cascade enzyme catalytic activity, which can be activated by glucose in diabetic wound tissues. Specifically, GOx on PGOB catalyzes glucose into hydrogen peroxide, which can further decompose into hydroxyl radicals that have higher toxicity for bacterial inactivation. Additionally, glucose decomposition creates a low pH microenvironment, facilitating the cascade catalytic activity that ensures better bacterial suppression within the wound tissues. Furthermore, hFGF2 promotes the proliferation and migration of fibroblasts. Both in vitro and in vivo experiments confirm that PGOB effectively accelerates wound healing processes through bacteria inactivation and tissue regeneration. This study has developed an alternative strategy for glucose-triggered synergistic cascade therapy for diabetic wounds.


Assuntos
Glucose Oxidase , Glucose , Platina , Cicatrização , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Glucose Oxidase/farmacologia , Platina/química , Platina/farmacologia , Glucose/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Nanopartículas Metálicas/química , Proliferação de Células/efeitos dos fármacos , Lipídeos/química , Humanos , Tamanho da Partícula , Masculino , Propriedades de Superfície
20.
J Med Chem ; 67(17): 15837-15861, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39208364

RESUMO

eEF2K, an atypical alpha-kinase, is responsible for regulating protein synthesis and energy homeostasis. Aberrant eEF2K function has been linked to various human cancers, including triple-negative breast cancer (TNBC). However, limited cellular activity of current eEF2K modulators impedes their clinical application. Based on the 2-phenyl-1,2,4-triazine-3,5(2H,4H)-dione scaffold of our hits I4 and C1, structure-activity relationship analysis led to the discovery of several more active derivatives (e.g., 19, 34, and 36) in inhibiting the viability of TNBC cell line MDA-MB-231. Moreover, the most potent compound 36 significantly suppresses the viability, proliferation, and migration of both MDA-MB-231 and HCC1806 cell lines. Mechanistically, compound 36 has a high binding affinity for the eEF2K protein and effectively induces its degradation. Additionally, 36 exerts a comparable tumor-suppressive effect to paclitaxel in an MDA-MB-231 cell xenograft mouse model with no obvious toxicity, demonstrating that compound 36 could be developed as a potential novel therapeutic for TNBC treatment.


Assuntos
Antineoplásicos , Proliferação de Células , Quinase do Fator 2 de Elongação , Triazinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Relação Estrutura-Atividade , Animais , Quinase do Fator 2 de Elongação/metabolismo , Quinase do Fator 2 de Elongação/antagonistas & inibidores , Triazinas/farmacologia , Triazinas/química , Triazinas/síntese química , Triazinas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Feminino , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Movimento Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sobrevivência Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA