Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 7(7): 1075-1086, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35760840

RESUMO

Coevolution between bacteriophages (phages) and their bacterial hosts occurs through changes in resistance and counter-resistance mechanisms. To assess phage-host evolution in wild populations, we isolated 195 Vibrio crassostreae strains and 243 vibriophages during a 5-month time series from an oyster farm and combined these isolates with existing V. crassostreae and phage isolates. Cross-infection studies of 81,926 host-phage pairs delineated a modular network where phages are best at infecting co-occurring hosts, indicating local adaptation. Successful propagation of phage is restricted by the ability to adsorb to closely related bacteria and further constrained by strain-specific defence systems. These defences are highly diverse and predominantly located on mobile genetic elements, and multiple defences are active within a single genome. We further show that epigenetic and genomic modifications enable phage to adapt to bacterial defences and alter host range. Our findings reveal that the evolution of bacterial defences and phage counter-defences is underpinned by frequent genetic exchanges with, and between, mobile genetic elements.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Especificidade de Hospedeiro
2.
Environ Microbiol ; 22(10): 4198-4211, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31390475

RESUMO

Pacific oyster mortality syndrome affects juveniles of Crassostrea gigas oysters and threatens the sustainability of commercial and natural stocks of this species. Vibrio crassostreae (V. crassostreae) has been repeatedly isolated from diseased animals, and the majority of the strains have been demonstrated to be virulent for oysters. In this study, we showed that oyster farms exhibited a high prevalence of a virulence plasmid carried by V. crassostreae, while oysters, at an adult stage, were reservoirs of this virulent population. The pathogenicity of V. crassostreae depends on a novel transcriptional regulator, which activates the bidirectional promoter of a type 6 secretion system (T6SS) genes cluster. Both the T6SS and a second chromosomal virulence factor, r5.7, are necessary for virulence but act independently to cause haemocyte (oyster immune cell) cytotoxicity. A phylogenetically closely related T6SS was identified in V. aestuarianus and V. tapetis, which infect adult oysters and clams respectively. We propose that haemocyte cytotoxicity is a lethality trait shared by a broad range of mollusc pathogens, and we speculate that T6SS was involved in parallel evolution of pathogen for molluscs.


Assuntos
Crassostrea/imunologia , Crassostrea/microbiologia , Hemócitos/imunologia , Sistemas de Secreção Tipo VI/genética , Vibrio/genética , Fatores de Virulência/genética , Animais , Filogenia , Plasmídeos , Vibrio/patogenicidade , Virulência
3.
ISME J ; 12(12): 2954-2966, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30072747

RESUMO

Diseases of marine animals caused by bacteria of the genus Vibrio are on the rise worldwide. Understanding the eco-evolutionary dynamics of these infectious agents is important for predicting and managing these diseases. Yet, compared to Vibrio infecting humans, knowledge of their role as animal pathogens is scarce. Here we ask how widespread is virulence among ecologically differentiated Vibrio populations, and what is the nature and frequency of virulence genes within these populations? We use a combination of population genomics and molecular genetics to assay hundreds of Vibrio strains for their virulence in the oyster Crassostrea gigas, a unique animal model that allows high-throughput infection assays. We show that within the diverse Splendidus clade, virulence represents an ancestral trait but has been lost from several populations. Two loci are necessary for virulence, the first being widely distributed across the Splendidus clade and consisting of an exported conserved protein (R5.7). The second is a MARTX toxin cluster, which only occurs within V. splendidus and is for the first time associated with virulence in marine invertebrates. Varying frequencies of both loci among populations indicate different selective pressures and alternative ecological roles, based on which we suggest strategies for epidemiological surveys.


Assuntos
Crassostrea/microbiologia , Vibrio/genética , Animais , Organismos Aquáticos , Vibrio/patogenicidade , Virulência
4.
Nat Commun ; 8(1): 1248, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093459

RESUMO

The Tetraconata (Pancrustacea) concept proposes that insects are more closely related to aquatic crustaceans than to terrestrial centipedes or millipedes. The question therefore arises whether insects have kept crustacean-specific genetic traits that could be targeted by specific toxins. Here we show that a toxin (nigritoxin), originally identified in a bacterial pathogen of shrimp, is lethal for organisms within the Tetraconata and non-toxic to other animals. X-ray crystallography reveals that nigritoxin possesses a new protein fold of the α/ß type. The nigritoxin N-terminal domain is essential for cellular translocation and likely encodes specificity for Tetraconata. Once internalized by eukaryotic cells, nigritoxin induces apoptotic cell death through structural features that are localized in the C-terminal domain of the protein. We propose that nigritoxin will be an effective means to identify a Tetraconata evolutionarily conserved pathway and speculate that nigritoxin holds promise as an insecticidal protein.


Assuntos
Apoptose/efeitos dos fármacos , Artrópodes/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Larva/efeitos dos fármacos , Penaeidae/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Vibrio/patogenicidade , Animais , Toxinas Bacterianas/química , Evolução Biológica , Crassostrea/efeitos dos fármacos , Crustáceos , Cristalografia por Raios X , Caranguejos Ferradura/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Dobramento de Proteína , Estrutura Terciária de Proteína
5.
ISME J ; 11(4): 1043-1052, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27922600

RESUMO

Vibrios are frequently associated with oyster mortality; however whether they are the primary causative agent or secondary opportunistic colonizers is not well understood. Here we combine analysis of natural infection dynamics, population genomics and molecular genetics to ask (i) to what extent oysters are passively colonized by Vibrio population present in the surrounding water, (ii) how populations turn over during pathogenicity events and (iii) what genetic factors are responsible for pathogenicity. We identified several populations of Vibrio preferentially associated with oyster tissues. Among these, Vibrio crassostreae is particularly abundant in diseased animals while nearly absent in the surrounding water, and its pathogenicity is correlated with the presence of a large mobilizable plasmid. We further demonstrate that the plasmid is essential for killing but not necessary for survival in tissues of oysters. Our results suggest that V. crassostreae first differentiated into a benign oyster colonizer that was secondarily turned into a pathogen by introgression of a virulence plasmid into the population, possibly facilitated by elevated host density in farming areas.


Assuntos
Crassostrea/microbiologia , Vibrio/genética , Vibrio/patogenicidade , Animais , Interações Hospedeiro-Patógeno , Virulência
6.
Front Plant Sci ; 6: 68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25745426

RESUMO

Mutagenesis is the only process by which unpredicted biological gene function can be identified. Despite that several macroalgal developmental mutants have been generated, their causal mutation was never identified, because experimental conditions were not gathered at that time. Today, progresses in macroalgal genomics and judicious choices of suitable genetic models make mutated gene identification possible. This article presents a comparative study of two methods aiming at identifying a genetic locus in the brown alga Ectocarpus siliculosus: positional cloning and Next-Generation Sequencing (NGS)-based mapping. Once necessary preliminary experimental tools were gathered, we tested both analyses on an Ectocarpus morphogenetic mutant. We show how a narrower localization results from the combination of the two methods. Advantages and drawbacks of these two approaches as well as potential transfer to other macroalgae are discussed.

7.
Plant Cell ; 23(4): 1666-78, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21478443

RESUMO

Brown algae are multicellular marine organisms evolutionarily distant from both metazoans and land plants. The molecular or cellular mechanisms that govern the developmental patterning in brown algae are poorly characterized. Here, we report the first morphogenetic mutant, étoile (etl), produced in the brown algal model Ectocarpus siliculosus. Genetic, cellular, and morphometric analyses showed that a single recessive locus, ETL, regulates cell differentiation: etl cells display thickening of the extracellular matrix (ECM), and the elongated, apical, and actively dividing E cells are underrepresented. As a result of this defect, the overrepresentation of round, branch-initiating R cells in the etl mutant leads to the rapid induction of the branching process at the expense of the uniaxial growth in the primary filament. Computational modeling allowed the simulation of the etl mutant phenotype by including a modified response to the neighborhood information in the division rules used to specify wild-type development. Microarray experiments supported the hypothesis of a defect in cell-cell communication, as primarily Lin-Notch-domain transmembrane proteins, which share similarities with metazoan Notch proteins involved in binary cell differentiation were repressed in etl. Thus, our study highlights the role of the ECM and of novel transmembrane proteins in cell-cell communication during the establishment of the developmental pattern in this brown alga.


Assuntos
Padronização Corporal/genética , Loci Gênicos/genética , Phaeophyceae/crescimento & desenvolvimento , Phaeophyceae/genética , Diferenciação Celular , Tamanho Celular , Segregação de Cromossomos/genética , Simulação por Computador , Cruzamentos Genéticos , Genes Recessivos/genética , Células Germinativas Vegetais/citologia , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/ultraestrutura , Mutagênese/genética , Mutação/genética , Phaeophyceae/citologia , Phaeophyceae/ultraestrutura , Fenótipo , Estrutura Terciária de Proteína
8.
Genome Res ; 19(7): 1233-42, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19403753

RESUMO

Mimivirus, a giant DNA virus infecting Acanthamoeba, is revealing an increasing list of unique features such as a 1.2-Mb genome with numerous genes not found in other viruses, a uniquely conserved promoter signal, and a particle of unmatched complexity using two distinct portals for genome delivery and packaging. Herein, we contribute a further Mimivirus distinctive feature discovered by sequencing a panel of viral cDNAs produced for probing the structure of Mimivirus transcripts. All Mimivirus mRNAs are polyadenylated at a site coinciding exactly with unrelated, but strongly palindromic, genomic sequences. The analysis of 454 Life Sciences (Roche) FLX cDNA tags (150,651) confirmed this finding for all Mimivirus genes independent of their transcription timings and expression levels. The absence of a suitable palindromic signal between adjacent genes results in transcripts encompassing multiple ORFs in the same or even in opposite orientations. Surprisingly, Mimivirus tRNAs are expressed as polyadenylated messengers, including an ORF/tRNA composite mRNA. To our knowledge, both the nature and the stringency of the "hairpin rule" defining the location of polyadenylation sites are unique, raising once more the question of Mimivirus's evolutionary origin. The precise molecular mechanisms implementing the hairpin rule into the 3'-end processing of Mimivirus pre-mRNAs remain to be elucidated.


Assuntos
Acanthamoeba/virologia , Vírus de DNA/genética , Genoma Viral , Fases de Leitura Aberta/genética , Poliadenilação , Animais , Primers do DNA , DNA Complementar/genética , Evolução Molecular , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA de Transferência/genética
9.
Proc Natl Acad Sci U S A ; 104(15): 6394-9, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17405861

RESUMO

Part of an ancestral bactericidal system, vertebrate C-type lysozyme targets the peptidoglycan moiety of bacterial cell walls. We report the crystal structure of a protein inhibitor of C-type lysozyme, the Escherichia coli Ivy protein, alone and in complex with hen egg white lysozyme. Ivy exhibits a novel fold in which a protruding five-residue loop appears essential to its inhibitory effect. This feature guided the identification of Ivy orthologues in other Gram-negative bacteria. The structure of the evolutionary distant Pseudomonas aeruginosa Ivy orthologue was also determined in complex with hen egg white lysozyme, and its antilysozyme activity was confirmed. Ivy expression protects porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is a response against the permeabilizing effects of the innate vertebrate immune system. As such, Ivy acts as a virulence factor for a number of Gram-negative bacteria-infecting vertebrates.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolução Molecular , Modelos Moleculares , Muramidase/antagonistas & inibidores , Filogenia , Análise por Conglomerados , Cristalografia , Conformação Proteica , Especificidade da Espécie
10.
Artigo em Inglês | MEDLINE | ID: mdl-16510997

RESUMO

The amoeba-infecting Mimivirus is the largest known double-stranded DNA virus, with a 400 nm particle size, comparable to that of mycoplasma. The complete sequence of its 1.2 Mbp genome has recently been determined [Raoult et al. (2004), Science, 306, 1344-1350] and revealed numerous genes that were not expected to be found in a virus, such as genes encoding translation components, including 4-amino-acyl tRNA synthetases and homologues to various translation initiation, elongation and termination factors. A comprehensive structural and functional study of these Mimivirus gene products was initiated, as they may hold important clues about the origin of DNA viruses. Here, the first preliminary crystallographic and functional results obtained on one of these targets, Mimivirus TyrRS, are reported. Preliminary phasing was obtained using an original combination of homology modelling and normal mode analysis. Experimental evidence that Mimivirus tyrosyl tRNA synthetase recombinant gene product does indeed activate tyrosine is also presented.


Assuntos
Aminoacil-tRNA Sintetases/química , Vírus de DNA/enzimologia , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/isolamento & purificação , Aminoacil-tRNA Sintetases/metabolismo , Amoeba/virologia , Animais , Sequência Conservada , Cristalografia por Raios X , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Virais/química , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo
11.
J Struct Funct Genomics ; 4(2-3): 141-57, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14649299

RESUMO

With more than 100 antibacterial drugs at our disposal in the 1980's, the problem of bacterial infection was considered solved. Today, however, most hospital infections are insensitive to several classes of antibacterial drugs, and deadly strains of Staphylococcus aureus resistant to vancomycin--the last resort antibiotic--have recently begin to appear. Other life-threatening microbes, such as Enterococcus faecalis and Mycobacterium tuberculosis are already able to resist every available antibiotic. There is thus an urgent, and continuous need for new, preferably large-spectrum, antibacterial molecules, ideally targeting new biochemical pathways. Here we report on the progress of our structural genomics program aiming at the discovery of new antibacterial gene targets among evolutionary conserved genes of uncharacterized function. A series of bioinformatic and comparative genomics analyses were used to identify a set of 221 candidate genes common to Gram-positive and Gram-negative bacteria. These genes were split between two laboratories. They are now submitted to a systematic 3-D structure determination protocol including cloning, protein expression and purification, crystallization, X-ray diffraction, structure interpretation, and function prediction. We describe here our strategies for the 111 genes processed in our laboratory. Bioinformatics is used at most stages of the production process and out of 111 genes processed--and 17 months into the project--108 have been successfully cloned, 103 have exhibited detectable expression, 84 have led to the production of soluble protein, 46 have been purified, 12 have led to usable crystals, and 7 structures have been determined.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/química , Desenho de Fármacos , Genes Bacterianos , Genômica/métodos , Hidrolases Anidrido Ácido/química , Oxirredutases do Álcool/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/química , Sequência Conservada , Cristalografia por Raios X , Endopeptidases/química , Escherichia coli/genética , Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Oxirredutases/química , Filogenia , Reação em Cadeia da Polimerase/métodos , Conformação Proteica , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...