Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Neuropsychol Rehabil ; : 1-22, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38230516

RESUMO

Functional neuroimaging and electrophysiological assessments can identify evidence of residual consciousness and cognition in patients with prolonged disorders of consciousness (PDOC) who are otherwise behaviourally unresponsive. These functional neurodiagnostics are increasingly available in clinical settings and are recommended by international clinical guidelines to reduce diagnostic and prognostic uncertainty, and thereby assist family caregivers in their best-interests decision-making. Nevertheless, little is known about how family caregivers make sense of the results of these state-of-the-art functional neurodiagnostics. By applying Interpretative Phenomenological Analysis (IPA) to interviews with family caregivers of patients with diagnoses of PDOC who had received a functional neurodiagnostic assessment, we identify three primary themes of sense-making: The special significance of "brain scans"; A dynamic sense-making process; Holding on to hope and holding on to the person. These themes highlight the challenges of helping family caregivers to balance the relative importance of functional neurodiagnostic results with other clinical assessments and identify an ability of family caregivers to hold a contradiction in which they hope for recovery but simultaneously express a rational understanding of evidence to the contrary. We offer several recommendations for the ways in which family caregivers can be better supported to make sense of the results of functional neurodiagnostics.

2.
J Cogn Neurosci ; 35(9): 1394-1409, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37315333

RESUMO

Hypnosis has been shown to be of clinical utility; however, its underlying neural mechanisms remain unclear. This study aims to investigate altered brain dynamics during the non-ordinary state of consciousness induced by hypnosis. We studied high-density EEG in 9 healthy participants during eyes-closed wakefulness and during hypnosis, induced by a muscle relaxation and eyes fixation procedure. Using hypotheses based on internal and external awareness brain networks, we assessed region-wise brain connectivity between six ROIs (right and left frontal, right and left parietal, upper and lower midline regions) at the scalp level and compared across conditions. Data-driven, graph-theory analyses were also carried out to characterize brain network topology in terms of brain network segregation and integration. During hypnosis, we observed (1) increased delta connectivity between left and right frontal, as well as between right frontal and parietal regions; (2) decreased connectivity for alpha (between right frontal and parietal and between upper and lower midline regions) and beta-2 bands (between upper midline and right frontal, frontal and parietal, also between upper and lower midline regions); and (3) increased network segregation (short-range connections) in delta and alpha bands, and increased integration (long-range connections) in beta-2 band. This higher network integration and segregation was measured bilaterally in frontal and right parietal electrodes, which were identified as central hub regions during hypnosis. This modified connectivity and increased network integration-segregation properties suggest a modification of the internal and external awareness brain networks that may reflect efficient cognitive-processing and lower incidences of mind-wandering during hypnosis.


Assuntos
Estado de Consciência , Hipnose , Humanos , Estado de Consciência/fisiologia , Encéfalo/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Vigília , Mapeamento Encefálico
3.
PLoS Biol ; 21(5): e3002120, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155704

RESUMO

In the search for the neural basis of conscious experience, perception and the cognitive processes associated with reporting perception are typically confounded as neural activity is recorded while participants explicitly report what they experience. Here, we present a novel way to disentangle perception from report using eye movement analysis techniques based on convolutional neural networks and neurodynamical analyses based on information theory. We use a bistable visual stimulus that instantiates two well-known properties of conscious perception: integration and differentiation. At any given moment, observers either perceive the stimulus as one integrated unitary object or as two differentiated objects that are clearly distinct from each other. Using electroencephalography, we show that measures of integration and differentiation based on information theory closely follow participants' perceptual experience of those contents when switches were reported. We observed increased information integration between anterior to posterior electrodes (front to back) prior to a switch to the integrated percept, and higher information differentiation of anterior signals leading up to reporting the differentiated percept. Crucially, information integration was closely linked to perception and even observed in a no-report condition when perceptual transitions were inferred from eye movements alone. In contrast, the link between neural differentiation and perception was observed solely in the active report condition. Our results, therefore, suggest that perception and the processes associated with report require distinct amounts of anterior-posterior network communication and anterior information differentiation. While front-to-back directed information is associated with changes in the content of perception when viewing bistable visual stimuli, regardless of report, frontal information differentiation was absent in the no-report condition and therefore is not directly linked to perception per se.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Retroalimentação , Movimentos Oculares , Percepção , Percepção Visual , Estimulação Luminosa
4.
Eur J Neurosci ; 56(9): 5615-5636, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35799324

RESUMO

Down's syndrome is associated with pathological ageing and a propensity for early-onset Alzheimer's disease. The early symptoms of dementia in people with Down's syndrome may reflect frontal lobe vulnerability to amyloid deposition. Auditory predictive processes rely on the bilateral auditory cortices with the recruitment of frontal cortices and appear to be impaired in pathologies characterized by compromised frontal lobe. Hence, auditory predictive processes were investigated to assess Down's syndrome pathology and its relationship with pathological ageing. An auditory electroencephalography (EEG) global-local paradigm was presented to the participants, in which oddball stimuli could either violate local or higher level global rules. We characterised predictive processes in individuals with Down's syndrome and their relationship with pathological ageing, with a focus on the EEG event-related potential called Mismatch Negativity (MMN) and the P300. In Down's syndrome, we also evaluated the EEG components as predictor of cognitive decline 1 year later. We found that predictive processes of detection of auditory violations are overall preserved in Down's syndrome but also that the amplitude of the MMN to local deviancies decreases with age. However, the 1-year follow-up of Down's syndrome found that none of the ERPs measures predicted subsequent cognitive decline. The present study provides a novel characterization of electrophysiological markers of local and global predictive processes in Down's syndrome.


Assuntos
Doença de Alzheimer , Síndrome de Down , Adulto , Humanos , Síndrome de Down/diagnóstico , Síndrome de Down/patologia , Síndrome de Down/psicologia , Envelhecimento , Eletroencefalografia
6.
Sci Rep ; 11(1): 16267, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381123

RESUMO

The overt or covert ability to follow commands in patients with disorders of consciousness is considered a sign of awareness and has recently been defined as cortically mediated behaviour. Despite its clinical relevance, the brain signatures of the perceptual processing supporting command following have been elusive. This multimodal study investigates the temporal spectral pattern of electrical brain activity to identify features that differentiated healthy controls from patients both able and unable to follow commands. We combined evidence from behavioural assessment, functional neuroimaging during mental imagery and high-density electroencephalography collected during auditory prediction, from 21 patients and 10 controls. We used a penalised regression model to identify command following using features from electroencephalography. We identified seven well-defined spatiotemporal signatures in the delta, theta and alpha bands that together contribute to identify DoC subjects with and without the ability to follow command, and further distinguished these groups of patients from controls. A fine-grained analysis of these seven signatures enabled us to determine that increased delta modulation at the frontal sensors was the main feature in command following patients. In contrast, higher frequency theta and alpha modulations differentiated controls from both groups of patients. Our findings highlight a key role of spatiotemporally specific delta modulation in supporting cortically mediated behaviour including the ability to follow command. However, patients able to follow commands nevertheless have marked differences in brain activity in comparison with healthy volunteers.


Assuntos
Comportamento , Cognição , Transtornos da Consciência/diagnóstico , Transtornos da Consciência/psicologia , Eletroencefalografia/métodos , Lobo Temporal/fisiopatologia , Adulto , Idoso , Conscientização , Feminino , Humanos , Masculino , Processos Mentais , Pessoa de Meia-Idade , Percepção , Adulto Jovem
7.
Brain Commun ; 3(2): fcab017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855295

RESUMO

Accurate early prognostication is vital for appropriate long-term care decisions after traumatic brain injury. While measures of resting-state EEG oscillations and their network properties, derived from graph theory, have been shown to provide clinically useful information regarding diagnosis and recovery in patients with chronic disorders of consciousness, little is known about the value of these network measures when calculated from a standard clinical low-density EEG in the acute phase post-injury. To investigate this link, we first validated a set of measures of oscillatory network features between high-density and low-density resting-state EEG in healthy individuals, thus ensuring accurate estimation of underlying cortical function in clinical recordings from patients. Next, we investigated the relationship between these features and the clinical picture and outcome of a group of 18 patients in acute post-traumatic unresponsive states who were not following commands 2 days+ after sedation hold. While the complexity of the alpha network, as indexed by the standard deviation of the participation coefficients, was significantly related to the patients' clinical picture at the time of EEG, no network features were significantly related to outcome at 3 or 6 months post-injury. Rather, mean relative alpha power across all electrodes improved the accuracy of outcome prediction at 3 months relative to clinical features alone. These results highlight the link between the alpha rhythm and clinical signs of consciousness and suggest the potential for simple measures of resting-state EEG band power to provide a coarse snapshot of brain health for stratification of patients for rehabilitation, therapy and assessments of both covert and overt cognition.

8.
Neuroimage ; 231: 117841, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33577934

RESUMO

In recent years, specific cortical networks have been proposed to be crucial for sustaining consciousness, including the posterior hot zone and frontoparietal resting state networks (RSN). Here, we computationally evaluate the relative contributions of three RSNs - the default mode network (DMN), the salience network (SAL), and the central executive network (CEN) - to consciousness and its loss during propofol anaesthesia. Specifically, we use dynamic causal modelling (DCM) of 10 min of high-density EEG recordings (N = 10, 4 males) obtained during behavioural responsiveness, unconsciousness and post-anaesthetic recovery to characterise differences in effective connectivity within frontal areas, the posterior 'hot zone', frontoparietal connections, and between-RSN connections. We estimate - for the first time - a large DCM model (LAR) of resting EEG, combining the three RSNs into a rich club of interconnectivity. Consistent with the hot zone theory, our findings demonstrate reductions in inter-RSN connectivity in the parietal cortex. Within the DMN itself, the strongest reductions are in feed-forward frontoparietal and parietal connections at the precuneus node. Within the SAL and CEN, loss of consciousness generates small increases in bidirectional connectivity. Using novel DCM leave-one-out cross-validation, we show that the most consistent out-of-sample predictions of the state of consciousness come from a key set of frontoparietal connections. This finding also generalises to unseen data collected during post-anaesthetic recovery. Our findings provide new, computational evidence for the importance of the posterior hot zone in explaining the loss of consciousness, highlighting also the distinct role of frontoparietal connectivity in underpinning conscious responsiveness, and consequently, suggest a dissociation between the mechanisms most prominently associated with explaining the contrast between conscious awareness and unconsciousness, and those maintaining consciousness.


Assuntos
Anestésicos/administração & dosagem , Rede de Modo Padrão/fisiologia , Lobo Frontal/fisiologia , Redes Neurais de Computação , Lobo Parietal/fisiologia , Inconsciência/fisiopatologia , Estado de Consciência/efeitos dos fármacos , Estado de Consciência/fisiologia , Rede de Modo Padrão/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Feminino , Lobo Frontal/efeitos dos fármacos , Humanos , Masculino , Lobo Parietal/efeitos dos fármacos , Propofol/administração & dosagem , Inconsciência/induzido quimicamente , Adulto Jovem
9.
Sci Rep ; 11(1): 2401, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504828

RESUMO

Mental imagery is the process through which we retrieve and recombine information from our memory to elicit the subjective impression of "seeing with the mind's eye". In the social domain, we imagine other individuals while recalling our encounters with them or modelling alternative social interactions in future. Many studies using imaging and neurophysiological techniques have shown several similarities in brain activity between visual imagery and visual perception, and have identified frontoparietal, occipital and temporal neural components of visual imagery. However, the neural connectivity between these regions during visual imagery of socially relevant stimuli has not been studied. Here we used electroencephalography to investigate neural connectivity and its dynamics between frontal, parietal, occipital and temporal electrodes during visual imagery of faces. We found that voluntary visual imagery of faces is associated with long-range phase synchronisation in the gamma frequency range between frontoparietal electrode pairs and between occipitoparietal electrode pairs. In contrast, no effect of imagery was observed in the connectivity between occipitotemporal electrode pairs. Gamma range synchronisation between occipitoparietal electrode pairs predicted subjective ratings of the contour definition of imagined faces. Furthermore, we found that visual imagery of faces is associated with an increase of short-range frontal synchronisation in the theta frequency range, which temporally preceded the long-range increase in the gamma synchronisation. We speculate that the local frontal synchrony in the theta frequency range might be associated with an effortful top-down mnemonic reactivation of faces. In contrast, the long-range connectivity in the gamma frequency range along the fronto-parieto-occipital axis might be related to the endogenous binding and subjective clarity of facial visual features.


Assuntos
Face , Rememoração Mental , Percepção Visual , Adulto , Algoritmos , Eletroencefalografia , Feminino , Humanos , Masculino , Modelos Teóricos , Estimulação Luminosa , Tempo de Reação , Adulto Jovem
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 134-137, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33017948

RESUMO

Neuroscience has generated a number of recent advances in the search for the neural correlates of consciousness, but these have yet to find valuable real-world applications. Electroencephalography under anesthesia provides a powerful experimental setup to identify electrophysiological signatures of altered states of consciousness, as well as a testbed for developing systems for automatic diagnosis and prognosis of awareness in clinical settings. In this work, we use deep convolutional neural networks to automatically differentiate sub-anesthetic states and depths of anesthesia, solely from one second of raw EEG signal. Our results with leave-one-participant-out-cross-validation show that behavioral measures, such as the Ramsay score, can be used to learn generalizable neural networks that reliably predict levels of unconsciousness in unseen transitional anesthetic states, as well as in unseen experimental setups and behaviors. Our findings highlight the potential of deep learning to detect progressive changes in anesthetic-induced unconsciousness with higher granularity than behavioral or pharmacological markers. This work has broader significance for identifying generalized patterns of brain activity that index states of consciousness.Clinical Relevance- In the United States alone, over 100,000 people receive general anesthesia every day, from which up to 1% is affected by unintended intraoperative awareness [1]. Despite this, brain-based monitoring of consciousness is not common in the clinic, and has had mixed success [2]. Given this context, our aim is to develop and explore an automated deep learning model that accurately predicts and interprets the depth and quality of anesthesia from the raw EEG signal.


Assuntos
Anestésicos , Propofol , Estado de Consciência , Humanos , Redes Neurais de Computação , Inconsciência/induzido quimicamente
11.
Neuroimage ; 223: 117305, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32861789

RESUMO

Transcranial magnetic stimulation (TMS) has been widely used in human cognitive neuroscience to examine the causal role of distinct cortical areas in perceptual, cognitive and motor functions. However, it is widely acknowledged that the effects of focal cortical stimulation can vary substantially between participants and even from trial to trial within individuals. Recent work from resting state functional magnetic resonance imaging (fMRI) studies has suggested that spontaneous fluctuations in alertness over a testing session can modulate the neural dynamics of cortical processing, even when participants remain awake and responsive to the task at hand. Here we investigated the extent to which spontaneous fluctuations in alertness during wake-to-sleep transition can account for the variability in neurophysiological responses to TMS. We combined single-pulse TMS with neural recording via electroencephalography (EEG) to quantify changes in motor and cortical reactivity with fluctuating levels of alertness defined objectively on the basis of ongoing brain activity. We observed rapid, non-linear changes in TMS-evoked responses with decreasing levels of alertness, even while participants remained responsive in the behavioural task. Specifically, we found that the amplitude of motor evoked potentials peaked during periods of EEG flattening, whereas TMS-evoked potentials increased and remained stable during EEG flattening and the subsequent occurrence of theta ripples that indicate the onset of NREM stage 1 sleep. Our findings suggest a rapid and complex reorganization of active neural networks in response to spontaneous fluctuations of alertness over relatively short periods of behavioural testing during wake-to-sleep transition.


Assuntos
Nível de Alerta/fisiologia , Potenciais Evocados , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana , Adulto , Eletroencefalografia , Eletromiografia , Potencial Evocado Motor , Feminino , Humanos , Masculino , Adulto Jovem
12.
Neuroimage Clin ; 28: 102372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32795964

RESUMO

Providing an accurate prognosis for prolonged disorder of consciousness (pDOC) patients remains a clinical challenge. Large cross-sectional studies have demonstrated the diagnostic and prognostic value of functional brain networks measured using high-density electroencephalography (hdEEG). Nonetheless, the prognostic value of these neural measures has yet to be assessed by longitudinal follow-up. We address this gap by assessing the utility of hdEEG to prognosticate long-term behavioural outcome, employing longitudinal data collected from a cohort of patients assessed systematically with resting hdEEG and the Coma Recovery Scale-Revised (CRS-R) at the bedside over a period of two years. We used canonical correlation analysis to relate clinical (including CRS-R scores combined with demographic variables) and hdEEG variables to each other. This analysis revealed that the patient's age, and the hdEEG theta band power and alpha band connectivity, contributed most significantly to the relationship between hdEEG and clinical variables. Further, we found that hdEEG measures recorded at the time of assessment augmented clinical measures in predicting CRS-R scores at the next assessment. Moreover, the rate of hdEEG change not only predicted later changes in CRS-R scores, but also outperformed clinical measures in terms of prognostic power. Together, these findings suggest that improvements in functional brain networks precede changes in behavioural awareness in pDOC. We demonstrate here that bedside hdEEG assessments conducted at specialist nursing homes are feasible, have clinical utility, and can complement clinical knowledge and systematic behavioural assessments to inform prognosis and care.


Assuntos
Transtornos da Consciência , Estado de Consciência , Eletroencefalografia , Coma , Estudos Transversais , Humanos , Prognóstico
13.
Cereb Cortex ; 30(10): 5204-5217, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32427284

RESUMO

Two important theories in cognitive neuroscience are predictive coding (PC) and the global workspace (GW) theory. A key research task is to understand how these two theories relate to one another, and particularly, how the brain transitions from a predictive early state to the eventual engagement of a brain-scale state (the GW). To address this question, we present a source-localization of EEG responses evoked by the local-global task-an experimental paradigm that engages a predictive hierarchy, which encompasses the GW. The results of our source reconstruction suggest three phases of processing. The first phase involves the sensory (here auditory) regions of the superior temporal lobe and predicts sensory regularities over a short timeframe (as per the local effect). The third phase is brain-scale, involving inferior frontal, as well as inferior and superior parietal regions, consistent with a global neuronal workspace (GNW; as per the global effect). Crucially, our analysis suggests that there is an intermediate (second) phase, involving modulatory interactions between inferior frontal and superior temporal regions. Furthermore, sedation with propofol reduces modulatory interactions in the second phase. This selective effect is consistent with a PC explanation of sedation, with propofol acting on descending predictions of the precision of prediction errors; thereby constraining access to the GNW.


Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Potenciais Evocados Auditivos/fisiologia , Aceleração , Adulto , Compreensão/fisiologia , Humanos , Masculino , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Adulto Jovem
15.
Cereb Cortex ; 30(8): 4563-4580, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32219312

RESUMO

At any given moment, we experience a perceptual scene as a single whole and yet we may distinguish a variety of objects within it. This phenomenon instantiates two properties of conscious perception: integration and differentiation. Integration is the property of experiencing a collection of objects as a unitary percept and differentiation is the property of experiencing these objects as distinct from each other. Here, we evaluated the neural information dynamics underlying integration and differentiation of perceptual contents during bistable perception. Participants listened to a sequence of tones (auditory bistable stimuli) experienced either as a single stream (perceptual integration) or as two parallel streams (perceptual differentiation) of sounds. We computed neurophysiological indices of information integration and information differentiation with electroencephalographic and intracranial recordings. When perceptual alternations were endogenously driven, the integrated percept was associated with an increase in neural information integration and a decrease in neural differentiation across frontoparietal regions, whereas the opposite pattern was observed for the differentiated percept. However, when perception was exogenously driven by a change in the sound stream (no bistability), neural oscillatory power distinguished between percepts but information measures did not. We demonstrate that perceptual integration and differentiation can be mapped to theoretically motivated neural information signatures, suggesting a direct relationship between phenomenology and neurophysiology.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Estimulação Acústica , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
16.
Brain Commun ; 2(2): fcaa195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33426527

RESUMO

Auditory localization (i.e. turning the head and/or the eyes towards an auditory stimulus) is often part of the clinical evaluation of patients recovering from coma. The objective of this study is to determine whether auditory localization could be considered as a new sign of minimally conscious state, using a multimodal approach. The presence of auditory localization and the clinical outcome at 2 years of follow-up were evaluated in 186 patients with severe brain injury, including 64 with unresponsive wakefulness syndrome, 28 in minimally conscious state minus, 71 in minimally conscious state plus and 23 who emerged from the minimally conscious state. Brain metabolism, functional connectivity and graph theory measures were investigated by means of 18F-fluorodeoxyglucose positron emission tomography, functional MRI and high-density electroencephalography in two subgroups of unresponsive patients, with and without auditory localization. These two subgroups were also compared to a subgroup of patients in minimally conscious state minus. Auditory localization was observed in 13% of unresponsive patients, 46% of patients in minimally conscious state minus, 62% of patients in minimally conscious state plus and 78% of patients who emerged from the minimally conscious state. The probability to observe an auditory localization increased along with the level of consciousness, and the presence of auditory localization could predict the level of consciousness. Patients with auditory localization had higher survival rates (at 2-year follow-up) than those without localization. Differences in brain function were found between unresponsive patients with and without auditory localization. Higher connectivity in unresponsive patients with auditory localization was measured between the fronto-parietal network and secondary visual areas, and in the alpha band electroencephalography network. Moreover, patients in minimally conscious state minus significantly differed from unresponsive patients without auditory localization in terms of brain metabolism and alpha network centrality, whereas no difference was found with unresponsive patients who presented auditory localization. Our multimodal findings suggest differences in brain function between unresponsive patients with and without auditory localization, which support our hypothesis that auditory localization should be considered as a new sign of minimally conscious state. Unresponsive patients showing auditory localization should therefore no longer be considered unresponsive but minimally conscious. This would have crucial consequences on these patients' lives as it would directly impact the therapeutic orientation or end-of-life decisions usually taken based on the diagnosis.

17.
Brain Commun ; 1(1): fcz017, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886461

RESUMO

Accurate diagnosis and prognosis of disorders of consciousness is complicated by the variability amongst patients' trajectories. However, the majority of research and scientific knowledge in this field is based on cross-sectional studies. The translational gap in applying this knowledge to inform clinical management can only be bridged by research that systematically examines follow-up. In this study, we present findings from a novel longitudinal study of the long-term recovery trajectory of 39 patients, repeatedly assessed using the Coma Recovery Scale-Revised once every 3 months for 2 years, generating 185 assessments. Despite the expected inter-patient variability, there was a statistically significant improvement in behaviour over time. Further, improvements began approximately 22 months after injury. Individual variation in the trajectory of recovery was influenced by initial diagnosis. Patients with an initial diagnosis of unresponsive wakefulness state, who progressed to the minimally conscious state, did so at a median of 485 days following onset-later than 12-month period after which current guidelines propose permanence. Although current guidelines are based on the expectation that patients with traumatic brain injury show potential for recovery over longer periods than those with non-traumatic injury, we did not observe any differences between trajectories in these two subgroups. However, age was a significant predictor, with younger patients showing more promising recovery. Also, progressive increases in arousal contributed exponentially to improvements in behavioural awareness, especially in minimally conscious patients. These findings highlight the importance of indexing arousal when measuring awareness, and the potential for interventions to regulate arousal to aid long-term behavioural recovery in disorders of consciousness.

19.
Sci Rep ; 9(1): 8894, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222021

RESUMO

The weighted Phase Lag Index (wPLI) and the weighted Symbolic Mutual Information (wSMI) represent two robust and widely used methods for MEG/EEG functional connectivity estimation. Interestingly, both methods have been shown to detect relative alterations of brain functional connectivity in conditions associated with changes in the level of consciousness, such as following severe brain injury or under anaesthesia. Despite these promising findings, it was unclear whether wPLI and wSMI may account for distinct or similar types of functional interactions. Using simulated high-density (hd-)EEG data, we demonstrate that, while wPLI has high sensitivity for couplings presenting a mixture of linear and nonlinear interdependencies, only wSMI can detect purely nonlinear interaction dynamics. Moreover, we evaluated the potential impact of these differences on real experimental data by computing wPLI and wSMI connectivity in hd-EEG recordings of 12 healthy adults during wakefulness and deep (N3-)sleep, characterised by different levels of consciousness. In line with the simulation-based findings, this analysis revealed that both methods have different sensitivity for changes in brain connectivity across the two vigilance states. Our results indicate that the conjoint use of wPLI and wSMI may represent a powerful tool to study the functional bases of consciousness in physiological and pathological conditions.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/métodos , Adulto , Estado de Consciência , Feminino , Humanos , Masculino , Dinâmica não Linear
20.
Brain Topogr ; 32(2): 315-331, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30498872

RESUMO

As we fall sleep, our brain traverses a series of gradual changes at physiological, behavioural and cognitive levels, which are not yet fully understood. The loss of responsiveness is a critical event in the transition from wakefulness to sleep. Here we seek to understand the electrophysiological signatures that reflect the loss of capacity to respond to external stimuli during drowsiness using two complementary methods: spectral connectivity and EEG microstates. Furthermore, we integrate these two methods for the first time by investigating the connectivity patterns captured during individual microstate lifetimes. While participants performed an auditory semantic classification task, we allowed them to become drowsy and unresponsive. As they stopped responding to the stimuli, we report the breakdown of alpha networks and the emergence of theta connectivity. Further, we show that the temporal dynamics of all canonical EEG microstates slow down during unresponsiveness. We identify a specific microstate (D) whose occurrence and duration are prominently increased during this period. Employing machine learning, we show that the temporal properties of microstate D, particularly its prolonged duration, predicts the response likelihood to individual stimuli. Finally, we find a novel relationship between microstates and brain networks as we show that microstate D uniquely indexes significantly stronger theta connectivity during unresponsiveness. Our findings demonstrate that the transition to unconsciousness is not linear, but rather consists of an interplay between transient brain networks reflecting different degrees of sleep depth.


Assuntos
Comportamento/fisiologia , Mapeamento Encefálico/métodos , Eletroencefalografia , Vias Neurais/fisiologia , Sonolência , Estimulação Acústica , Adulto , Ritmo alfa/fisiologia , Interpretação Estatística de Dados , Feminino , Humanos , Aprendizado de Máquina , Masculino , Desempenho Psicomotor , Tempo de Reação/fisiologia , Ritmo Teta/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...