Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Cardiol ; 326: 206-212, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33259874

RESUMO

BACKGROUND: We aimed to provide a comprehensive aortic stiffness description using magnetic resonance imaging (MRI) in patients with ascending thoracic aorta aneurysm and tricuspid (TAV-ATAA) or bicuspid (BAV) aortic valve. METHODS: This case-control study included 18 TAV-ATAA and 19 BAV patients, with no aortic valve stenosis/severe regurgitation, who were 1:1 age-, gender- and central blood pressures (BP)-matched to healthy volunteers. Each underwent simultaneous aortic MRI and BP measurements. 3D anatomical MRI provided aortic diameters. Stiffness indices included: regional ascending (AA) and descending (DA) aorta pulse wave velocity (PWV) from 4D flow MRI; local AA and DA strain, distensibility and theoretical Bramwell-Hill (BH) model-based PWV, as well as regional arch PWV from 2D flow MRI. RESULTS: Patient groups had significantly higher maximal AA diameter (median[interquartile range], TAV-ATAA: 47.5[42.0-51.3]mm, BAV: 45.0[41.0-47.0]mm) than their respective controls (29.1[26.8-31.8] and 28.1[26.0-32.0]mm, p < 0.0001), while BP were similar (p ≥ 0.25). Stiffness indices were significantly associated with age (ρ ≥ 0.33), mean BP (arch PWV: ρ = 0.25, p = 0.05; DA distensibility: ρ = -0.30, p = 0.02) or AA diameter (arch PWV: ρ = 0.28, p = 0.03; DA PWV: ρ = 0.32, p = 0.009). None of them, however, was significantly different between TAV-ATAA or BAV patients and their matched controls. Finally, while direct PWV measures were significantly correlated to BH-PWV estimates in controls (ρ ≥ 0.40), associations were non-significant in TAV-ATAA and BAV groups (p ≥ 0.18). CONCLUSIONS: The overlap of MRI-derived aortic stiffness indices between patients with TAV or BAV aortopathy and matched controls highlights another heterogeneous feature of aortopathy, and suggests the urgent need for more sensitive indices which might help better discriminate such diseases.


Assuntos
Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Rigidez Vascular , Valva Aórtica/diagnóstico por imagem , Estudos de Casos e Controles , Doenças das Valvas Cardíacas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Análise de Onda de Pulso
3.
J Clin Med ; 9(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066661

RESUMO

Background. In recent years, deep learning has been increasingly applied to a vast array of ophthalmological diseases. Inherited retinal diseases (IRD) are rare genetic conditions with a distinctive phenotype on fundus autofluorescence imaging (FAF). Our purpose was to automatically classify different IRDs by means of FAF images using a deep learning algorithm. Methods. In this study, FAF images of patients with retinitis pigmentosa (RP), Best disease (BD), Stargardt disease (STGD), as well as a healthy comparable group were used to train a multilayer deep convolutional neural network (CNN) to differentiate FAF images between each type of IRD and normal FAF. The CNN was trained and validated with 389 FAF images. Established augmentation techniques were used. An Adam optimizer was used for training. For subsequent testing, the built classifiers were then tested with 94 untrained FAF images. Results. For the inherited retinal disease classifiers, global accuracy was 0.95. The precision-recall area under the curve (PRC-AUC) averaged 0.988 for BD, 0.999 for RP, 0.996 for STGD, and 0.989 for healthy controls. Conclusions. This study describes the use of a deep learning-based algorithm to automatically detect and classify inherited retinal disease in FAF. Hereby, the created classifiers showed excellent results. With further developments, this model may be a diagnostic tool and may give relevant information for future therapeutic approaches.

4.
J Cardiovasc Magn Reson ; 21(1): 75, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31829235

RESUMO

BACKGROUND: Arterial pulse wave velocity (PWV) is associated with increased mortality in aging and disease. Several studies have shown the accuracy of applanation tonometry carotid-femoral PWV (Cf-PWV) and the relevance of evaluating central aorta stiffness using 2D cardiovascular magnetic resonance (CMR) to estimate PWV, and aortic distensibility-derived PWV through the theoretical Bramwell-Hill model (BH-PWV). Our aim was to compare various methods of aortic PWV (aoPWV) estimation from 4D flow CMR, in terms of associations with age, Cf-PWV, BH-PWV and left ventricular (LV) mass-to-volume ratio while evaluating inter-observer reproducibility and robustness to temporal resolution. METHODS: We studied 47 healthy subjects (49.5 ± 18 years) who underwent Cf-PWV and CMR including aortic 4D flow CMR as well as 2D cine SSFP for BH-PWV and LV mass-to-volume ratio estimation. The aorta was semi-automatically segmented from 4D flow data, and mean velocity waveforms were estimated in 25 planes perpendicular to the aortic centerline. 4D flow CMR aoPWV was calculated: using velocity curves at two locations, namely ascending aorta (AAo) and distal descending aorta (DAo) aorta (S1, 2D-like strategy), or using all velocity curves along the entire aortic centreline (3D-like strategies) with iterative transit time (TT) estimates (S2) or a plane fitting of velocity curves systolic upslope (S3). For S1 and S2, TT was calculated using three approaches: cross-correlation (TTc), wavelets (TTw) and Fourier transforms (TTf). Intra-class correlation coefficients (ICC) and Bland-Altman biases (BA) were used to evaluate inter-observer reproducibility and effect of lower temporal resolution. RESULTS: 4D flow CMR aoPWV estimates were significantly (p < 0.05) correlated to the CMR-independent Cf-PWV, BH-PWV, age and LV mass-to-volume ratio, with the strongest correlations for the 3D-like strategy using wavelets TT (S2-TTw) (R = 0.62, 0.65, 0.77 and 0.52, respectively, all p < 0.001). S2-TTw was also highly reproducible (ICC = 0.99, BA = 0.09 m/s) and robust to lower temporal resolution (ICC = 0.97, BA = 0.15 m/s). CONCLUSIONS: Reproducible 4D flow CMR aoPWV estimates can be obtained using full 3D aortic coverage. Such 4D flow CMR stiffness measures were significantly associated with Cf-PWV, BH-PWV, age and LV mass-to-volume ratio, with a slight superiority of the 3D strategy using wavelets transit time (S2-TTw).


Assuntos
Aorta/diagnóstico por imagem , Angiografia por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Análise de Onda de Pulso , Rigidez Vascular , Adulto , Fatores Etários , Idoso , Aorta/fisiologia , Velocidade do Fluxo Sanguíneo , Feminino , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de Tempo
5.
Comput Biol Med ; 114: 103450, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31550556

RESUMO

OBJECTIVES: To report the design of an automated quantification algorithm for choroidal neovascularization (CNV) in the context of neovascular age-related macular degeneration (AMD), based on Optical Coherence Tomography Angiography (OCTA) images. MATERIAL AND METHODS: In this study, 54 patients (mean age 75.80 ± 14.29 years) with neovascular AMD (type 1 and type 2 CNV) were included retrospectively and separated into two groups (Group 1-24 images; Group 2-30 images), according to the lesion topology. All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont, California). The proposed algorithm is based on segmentation and enhancement methods including Frangi filter, Gabor wavelets and Fuzzy-C-Means Classification. Our results were compared to the manual quantifications given by the embedded quantification software "AngioAnalytics". RESULTS: Automated CNV segmentation and quantification of three neovascular AMD biomarkers: the total vascular area (TVA), the total area (TA) and the vascular density (VD) were possible in all cases. Automated versus manual quantification comparison revealed a statistically significant difference for TVA and VD measurements for both groups (p = 0.00036 for Group 1 TVA, p < 0.0001 for Group 1 VD and Group 2 TVA and VD). The difference in TA measurements was not significant in Group 2 (p = 0.143). Bland-Altman analysis revealed low inter-method bias for TA measurements and higher bias for TVA and VD. CONCLUSION: This paper presents a method for segmenting and quantifying CNV that constitutes a valid option for clinicians. Complementary validations have to be carried out to compare our method's accuracy to "AngioAnalytics".


Assuntos
Angiografia/métodos , Neovascularização de Coroide/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Tomografia de Coerência Óptica/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Humanos , Pessoa de Meia-Idade , Vasos Retinianos/diagnóstico por imagem , Estudos Retrospectivos
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 662-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736349

RESUMO

Vascular imaging is crucial in the treatment of many diseases. In the case of cerebral ArterioVenous Malformation (AVM), where the vascular network can be deeply altered, an accurate knowledge of its topology is required. For this purpose, after a vessels segmentation and skeletization applied on 3D rotational angiographic images (3DRA), we build a symbolic tree representation of the vascular network thanks to topological descriptors, such as end points, junctions and branches. This leads to an efficient tool to assist the neuroradiologist to understand the feeding and the draining of the AVM and to apprehend its complex architecture in order to determine the best therapeutic strategy before and during embolization interventions.


Assuntos
Imageamento Tridimensional , Angiografia , Encéfalo , Embolização Terapêutica , Malformações Arteriovenosas Intracranianas
7.
Artigo em Inglês | MEDLINE | ID: mdl-25571245

RESUMO

Diagnosis and computer-guided therapy of cerebral Arterio-Venous Malformations (AVM) require an accurate understanding of the cerebral vascular network both from structural and biomechanical point of view. We propose to obtain such information by analyzing three Dimensional Rotational Angiography (3DRA) images. In this paper, we describe a two-step process allowing 1) the 3D automatic segmentation of cerebral vessels from 3DRA images using a region-growing based algorithm and 2) the reconstruction of the segmented vessels using the 3D constrained Delaunay Triangulation method. The proposed algorithm was successfully applied to reconstruct cerebral blood vessels from ten datasets of 3DRA images. This software allows the neuroradiologist to separately analyze cerebral vessels for pre-operative interventions planning and therapeutic decision making.


Assuntos
Angiografia/métodos , Malformações Arteriovenosas/terapia , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Embolização Terapêutica , Imageamento Tridimensional/métodos , Interpretação de Imagem Radiográfica Assistida por Computador , Adulto , Algoritmos , Malformações Arteriovenosas/diagnóstico por imagem , Artéria Carótida Interna/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Planejamento de Assistência ao Paciente , Rotação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA