Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37957915

RESUMO

BACKGROUND: Advancement in tissue engineering has provided novel solutions for creating scaffolds as well as applying induction factors in the differentiation of stem cells. The present research aimed to investigate the differentiation of human adipose-derived mesenchymal stem cells to neural-like cells using the novel bioprinting method, as well as the effect of cerebrospinal fluid exosomes. METHODS: In the present study, the extent of neuronal proliferation and differentiation of adipose- derived stem cells were explored using the MTT method, immunocytochemistry, and real-- time PCR in the scaffolds created by the bioprinting process. Furthermore, in order to investigate the veracity of the identity of the CSF (Cerebrospinal fluid) derived exosomes, after the isolation of exosomes, dynamic light scattering (DLS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques were used. RESULTS: MTT findings indicated survivability and proliferation of cells in the scaffolds created by the bioprinting process during a 14-day period. The results obtained from real-time PCR showed that the level of MAP2 gene (Microtubule Associated Protein 2) expression increased on days 7 and 14, while the expression of the Nestin gene (intermediate filament protein) significantly decreased compared to the control. The investigation to confirm the identity of exosomes indicated that the CSF-derived exosomes had a spherical shape with a 40-100 nm size. CONCLUSION: CSF-derived exosomes can contribute to the neuronal differentiation of adipose- derived stem cells in alginate hydrogel scaffolds created by the bioprinting process.

2.
Cell J ; 15(2): 166-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23862119

RESUMO

OBJECTIVE: We studied both the presence of some carbohydrate compounds in a threedimensional (3D) matrix harvested from human gingiva and the cell behavior in this matrix. MATERIALS AND METHODS: In this experimental research, in order to prepare 3D scaffolds, human palatal gingival biopsies were harvested and physically decellularized by freezethawing and sodium dodecyl sulfate (SDS). The scaffolds were placed within the rings of blastema tissues obtained from a pinna rabbit, in vitro. We evaluated the presence of glycoconjugatesand cellular behavior according to histological, histochemical and spectrophotometry techniques at one, two and three weeks after culture. One-way analysis of variance (ANOVA)comparedthe groups. RESULTS: Extracellular matrix (ECM) remained after decellularization of tissue with 1% SDS. Glycoconjugate contents decreased meaningfully at a higher SDS concentration (p<0.0001). After culture of the ECM scaffold with blastema, we observed increased staining of alcian blue, periodic acid-Schiff (PAS) and toluidine blue in the scaffold and a number of other migrant cells which was caused by cell penetrationinto the scaffold. Spectrophotometry results showed an increase in glycosaminoglycans (GAGs) of the decellularized scaffolds at three weeks after culture. CONCLUSION: The present study has shown that a scaffold generated from palatal gingival tissue ECM is a suitable substrate for blastema cell migration and activity.This scaffold maypotentially be useful as a biological scaffold in tissue engineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...