Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(18): 9011-9020, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38623897

RESUMO

Nonlinear absorption of metal-halide perovskite nanocrystals (NCs) makes them an ideal candidate for applications which require multiphoton-excited photoluminescence. By doping perovskite NCs with lanthanides, their emission can be extended into the near-infrared (NIR) spectral region. We demonstrate how the combination of Yb3+ doping and bandgap engineering of cesium lead halide perovskite NCs performed by anion exchange (from Cl- to Br-) leads to efficient and tunable emitters that operate under two-photon excitation in the NIR spectral region. By optimizing the anion composition, Yb3+-doped CsPbClxBr3-x NCs exhibited high values of two-photon absorption cross-section reaching 2.3 × 105 GM, and displayed dual-band emission located both in the visible (407-493 nm) and NIR (985 nm). With a view of practical applications of bio-visualisation in the NIR spectral range, these NCs were embedded into silica microspheres which were further wrapped with amphiphilic polymer shells to ensure their water-compatibility. The resulting microspheres with embedded NCs could be easily dispersed in both toluene and water, while still exhibiting a dual-band emission in visible and NIR under both one- and two-photon excitation conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...