Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936382

RESUMO

Occupancy grid is a popular environment model that is widely applied for autonomous navigation of mobile robots. This model encodes obstacle information into the grid cells as a reference of the space state. However, when navigating on roads, the planning module of an autonomous vehicle needs to have semantic understanding of the scene, especially concerning the accessibility of the driving space. This paper presents a grid-based evidential approach for modeling semantic road space by taking advantage of a prior map that contains lane-level information. Road rules are encoded in the grid for semantic understanding. Our approach focuses on dealing with the localization uncertainty, which is a key issue, while parsing information from the prior map. Readings from an exteroceptive sensor are as well integrated in the grid to provide real-time obstacle information. All the information is managed in an evidential framework based on Dempster-Shafer theory. Real road results are reported with qualitative evaluation and quantitative analysis of the constructed grids to show the performance and the behavior of the method for real-time application.

2.
IEEE Trans Cybern ; 44(12): 2521-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24801831

RESUMO

Object association is a crucial step in target tracking and data fusion applications. This task can be formalized as the search for a relation between two sets (e.g., a sets of tracks and a set of observations) in such a way that each object in one set is matched with at most one object in the other set. In this paper, this problem is tackled using the formalism of belief functions. Evidence about the possible association of each object pair, usually obtained by comparing the values of some attributes, is modeled by a Dempster-Shafer mass function defined in the frame of all possible relations. These mass functions are combined using Dempster's rule, and the relation with maximal plausibility is found by solving an integer linear programming problem. This problem is shown to be equivalent to a linear assignment problem, which can be solved in polynomial time using, for example, the Hungarian algorithm. This method is demonstrated using simulated and real data. The 3-D extension of this problem (with three object sets) is also formalized and is shown to be NP-Hard.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...